Log in

In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study

  • Original Article
  • Published:
3 Biotech Aims and scope Submit manuscript

Abstract

In this study, toxicity of biologically synthesized silver nanoparticles (AgNPs) and gold nanoparticles (AuNPs) was compared using zebrafish as a model organism. At 96 h, LC50 of AgNPs and AuNPs was found to be 24.5 µg/L and 41 mg/L, respectively. Following the LC50 determination, half of the LC50 of AgNPs (12.25 µg/L) and AuNPs (20.5 mg/L) was exposed to adult zebrafishes for 14 days. Morphological changes, liver marker enzymes, reactive oxygen species (ROS) generation, genotoxic effects and mRNA expression levels of oxidative stress and innate immune response related genes were studied using nanoparticle treated gill, liver and blood cells. In this study, AgNP-treated gill and liver tissues showed a number of morphological changes such as cell membrane damage, irregular cell outlines, pyknotic nuclei and complete disruption of gill and liver cells; on the contrary, AuNPs treated liver tissues alone showed such changes. The levels of liver marker enzymes such as alanine aminotransferase and aspartate aminotransferase were increased after AgNPs treatment when compared to AuNPs treatment. AgNP-treated liver cells showed higher levels of ROS generation than the control; on the other hand, AuNPs treatment exhibited lower levels of ROS generation than the control. Interestingly, AgNP-treated blood cells showed micronuclei formation and nuclear abnormalities, while AuNPs treatment did not show such effects. Based on these observations, it is clear that AgNPs may cause oxidative stress and immunotoxicity to adult zebrafish than the AuNPs. However, these results clearly reveal the significance of relatively safe and less toxic bionanomaterials for possible biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Aerle RV, Johnston BD, Lange A, Bastos ED, Moorhouse A, Booth T, Paszkiewicz K, Tyler CR, Ball K, Santos EM (2013) Molecular mechanisms of toxicity of silver nanoparticles in zebrafish embryos. Environ Sci Technol 47:8005–8014

    Article  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2008) Toxicity of silver nanoparticles in zebrafish models. Nanotechnology 19:255102

    Article  CAS  Google Scholar 

  • Asharani PV, Wu YL, Gong Z, Valiyaveettil S (2011) Comparison of the toxicity of silver, gold and platinum nanoparticles in develo** zebrafish embryos. Nanotoxicology 5:43–54

    Article  CAS  Google Scholar 

  • Ayllon FE, Garcia-Vazquez (2000) Induction of micronuclei and other nuclear abnormalities in European minnow Phoxinus phoxinus and mollie Poecilia latipinna: an assessment of the fish micronucleus test. Mutation Res 467:177–186

    Article  CAS  Google Scholar 

  • Balakumaran MD, Ramachandran R, Balashanmugam P, Mukeshkumar DJ, Kalaichelvan PT (2016) Mycosynthesis of silver and gold nanoparticles: optimization, characterization and antimicrobial activity against human pathogens. Microbiol Res 182:8–20

    Article  CAS  Google Scholar 

  • Bar-Ilan O, Albrecht RM, Fako VE, Furgeson DY (2009) Toxicity assessments of multisized gold and silver nanoparticles in zebrafish embryos. Small 5:1897–1910

    Article  CAS  Google Scholar 

  • Bilberg K, Hovgaard MB, Besenbacher F, Baatrup E (2012) In vivo toxicity of silver nanoparticles and silver ions in zebrafish (Danio rerio). J Toxicol 2012:293784

  • Brasier AR (2006) The NF-κB regulatory network. Cardiovasc Toxicol 6:111–130

    Article  CAS  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: sources and toxicity. Biointerphases 2:MR17–MR71

    Article  Google Scholar 

  • Choi JE, Kim S, Ahn JH, Youn P, Kang JS, Park K, Yi J, Ryu DY (2010) Induction of oxidative stress and apoptosis by silver nanoparticles in the liver of adult zebrafish. Aquat Toxicol 100:151–159

    Article  CAS  Google Scholar 

  • Gilmore TD, Herscovitch M (2006) Inhibitors of NF-κB signaling: 785 and counting. Oncogene 25:6887–6899

    Article  CAS  Google Scholar 

  • Girilal M, Krishnakumar V, Poornima P, Fayaz AM, Kalaichelvan PT (2015) A comparative study on biologically and chemically synthesized silver nanoparticles induced heat shock proteins on fresh water fish Oreochromis niloticus. Chemosphere 139:461–468

    Article  CAS  Google Scholar 

  • Griffitt RJ, Hyndman K, Denslow ND, Barber DS (2009) Comparison of molecular and histological changes in zebrafish gills exposed to metallic nanoparticles. Toxicol Sci 107:404–415

    Article  CAS  Google Scholar 

  • Gunes C, Heuchel R, Georgiev O, Muller KH, Lichtlen P, Bluthmann H, Marino S, Aguzzi A, Schaffner W (1998) Embryonic lethality and liver degeneration in mice lacking the metal-responsive transcriptional activator MTF-1. Embo J 17:2846–2854

    Article  CAS  Google Scholar 

  • Haynes CL (2010) The emerging field of nanotoxicology. Anal Bioanal Chem 398:587–588

    Article  CAS  Google Scholar 

  • Hotchkiss RD (1948) A microchemical reaction resulting in the staining of polysaccharide structure in fixed tissue preparations. Arch Biochem 16:131–141

    CAS  PubMed  Google Scholar 

  • Hu YL, Qi W, Han F, Shao J, Gao J (2011) Toxicity evaluation of biodegradable chitosan nanoparticles using a zebrafish embryo model. Int J Nanomedicine 6:3351–3359

    CAS  PubMed  PubMed Central  Google Scholar 

  • Impellitteri CA, Tolaymat TM, Scheckel KG (2009) The speciation of silver nanoparticles in antimicrobial fabric before and after exposure to a hypochlorite/detergent solution. J Environ Qual 38:1528–1530

    Article  CAS  Google Scholar 

  • Kiernan JA (1999) Histological and histochemical methods: theory and practice, 3rd edn. Butterworth-Heinemann, Oxford

    Google Scholar 

  • Kim S, Choi JE, Choi J, Chung K-H, Park K, Yi J, Ryu D-Y (2009) Oxidative stress-dependent toxicity of silver nanoparticles in human hepatoma cells. Toxicol In Vitro 23:1076–1084

    Article  CAS  Google Scholar 

  • Krishnaraj C, Ramachandran R, Mohan K, Kalaichelvan PT (2012) Optimization for rapid synthesis of silver nanoparticles and its effect on phytopathogenic fungi. Spectrochim Acta A Mol Biomol Spectrosc 93:95–99

    Article  CAS  Google Scholar 

  • Krishnaraj C, Muthukumaran P, Ramachandran R, Balakumaran MD, Kalaichelvan PT (2014) Acalypha indica Linn: biogenic synthesis of silver and gold nanoparticles and their cytotoxic effects against MDA-MB-231, human breast cancer cells. Biotechnol Rep 4:42–49

    Article  CAS  Google Scholar 

  • Krishnaraj C, Harper SL, Yun S-I (2016) In vivo toxicological assessment of biologically synthesized silver nanoparticles in adult zebrafish (Danio rerio). J Hazard Mater 301:480–491

    Article  CAS  Google Scholar 

  • Marcolin E, Miguel BS, Vallejo D, Tieppo J, Marroni N, Gallego JG, Tunon MJ (2012) Quercetin treatment ameliorates inflammation and fibrosis in mice with nonalcoholic Steatohepatitis 1–3. J Nutr 142:1821–1828

    Article  CAS  Google Scholar 

  • Massarsky A, Dupuis L, Taylor J, Eisa-Beygi S, Strek L, Trudeau VL, Moon TW (2013) Assessment of nanosilver toxicity during zebrafish (Danio rerio) development. Chemosphere 92:59–66

    Article  CAS  Google Scholar 

  • Nel A, **a T, Mädler L, Li N (2006) Toxic potential of materials at the nanolevel. Science 311:622–627

    Article  CAS  Google Scholar 

  • Nowack B, Bucheli TD (2007) Occurrence, behavior and effects of nanoparticles in the environment. Environ Pollut 150:5–22

    Article  CAS  Google Scholar 

  • Oberdörster G, Oberdörster E, Oberdörster J (2005) Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environ Health Perspect 113:823–839

    Article  Google Scholar 

  • OECD (1992) Test No. 203: fish, acute toxicity test. OECD Publishing, Paris

    Book  Google Scholar 

  • Olasagasti M, Gatti AM, Capitani F, Barranco A, Pardo MA, Escuredo K, Rainieri S (2014) Toxic effects of colloidal nanosilver in zebrafish embryos. J Appl Toxicol 34:562–575

    Article  CAS  Google Scholar 

  • Project on Emerging Nanotechnologies (2018) Consumer products inventory. http://www.nanotechproject.org/cpi/products/. Accessed 7 June 2018

  • Rajan R, Chandran K, Harper SL, Yun S-I, Kalaichelvan PT (2015) Plant extract synthesized silver nanoparticles: an ongoing source of novel biocompatible materials. Ind Crops Prod 70:356–373

    Article  CAS  Google Scholar 

  • Rajan R, Chandran K, Sivakumar AS, Prasannakumar P, Abhay Kumar VK, Shim KS, Song C-G, Yun S-I (2017) Anticancer activity of biologically synthesized silver and gold nanoparticles on mouse myoblast cancer cells and their toxicity against embryonic zebrafish. Mater Sci Eng C Mater Biol Appl 73:674–683

    Article  Google Scholar 

  • Saquib Q, Al-Khedhairy AA, Siddiqui MA, Abou-Tarboush FM, Azam A, Musarrat J (2012) Titanium dioxide nanoparticles induced cytotoxicity, oxidative stress and DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro 26:351–361

    Article  CAS  Google Scholar 

  • Sarkar B, Netam SP, Mahanty A, Saha A, Bosu R, Krishnani KK (2014) Toxicity evaluation of chemically and plant derived silver nanoparticles on zebrafish (Danio rerio). Proc Natl Acad Sci India Sect B Biol Sci 84:885–892

    Article  CAS  Google Scholar 

  • Schmittgen TD, Livak KJ (2008) Analyzing real-time PCR data by the comparative C T method. Nat Protoc 3:1101–1108

    Article  CAS  Google Scholar 

  • Scown TM, Santos EM, Johnston BD, Gaiser B, Tyler CR (2010) Effects of aqueous exposure to silver nanoparticles of different sizes in Rainbow Trout. Toxicol Sci 115:521–534

    Article  CAS  Google Scholar 

  • Shah D, Savaliya R, Patel P, Kansara K, Pandya A, Dhawan A, Singh S (2018) Curcumin Ag nanoconjugates for improved therapeutic effects in cancer. Int J Nanomed 13:75–77

    Article  Google Scholar 

  • Shankar SS, Rai A, Ahmad A, Sastry M (2004a) Rapid synthesis of Au, Ag, and bimetallic Au core–Ag shell nanoparticles using Neem (Azadirachta indica) leaf broth. J Colloid Interface Sci 275:496–502

    Article  CAS  Google Scholar 

  • Shankar SS, Rai A, Ankamwar B, Singh A, Ahmad A, Sastry M (2004b) Biological synthesis of triangular gold nanoprisms. Nat Mater 3:482–488

    Article  CAS  Google Scholar 

  • Singh S, D’Britto V, Prabhune AA, Ramana CV, Dhawan A, Prasad BLV (2010) Cytotoxic and genotoxic assessment of glycolipid-reduced and -capped gold and silver nanoparticles. New J Chem 34:294–301

    Article  CAS  Google Scholar 

  • Smirnova IV, Bittel DC, Ravindra R, Jiang H, Andrews GK (2000) Zinc and cadmium can promote the rapid nuclear translocation of MTF-1. J Biol Chem 275:9377–9384

    Article  CAS  Google Scholar 

  • Srivastava M, Singh S, Self WT (2012) Exposure to silver nanoparticles inhibits selenoprotein synthesis and the activity of thioredoxin reductase. Environ Health Perspect 120:56–61

    Article  CAS  Google Scholar 

  • Tsukada J, Yoshida Y, Kominato Y, Auron PE (2011) The CCAAT/enhancer binding (C/EBP) family of basic-leucine zipper (bZIP) transcription factors is a multifaceted highly-regulated system for gene regulation. Cytokine 54:6–19

    Article  CAS  Google Scholar 

  • Williams JH, Farag AM, Stansbury MA, Young PA, Bergman HL, Petersen NS (1996) Accumulation of hsp70 in juvenile and adult rainbow trout gill exposed to metal-contaminated water and/or diet. Environ Toxicol Chem 15:1324–1328

    Article  CAS  Google Scholar 

  • Zakin MM (1992) Regulation of transferrin gene expression. FASEB J 6:3253–3258x

    Article  CAS  Google Scholar 

Download references

Acknowledgements

RR sincerely acknowledges University Grants Commission (UGC), Government of India for awarding UGC-BSR Meritorious Fellowship in Sciences. This research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Education (2013R1A1A2007953) and also funds from Chonbuk National University, Republic of Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Soon-Il Yun.

Ethics declarations

Conflict of interest

The authors declare that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PPTX 333 KB)

Supplementary material 2 (DOC 42 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramachandran, R., Krishnaraj, C., Kumar, V.K.A. et al. In vivo toxicity evaluation of biologically synthesized silver nanoparticles and gold nanoparticles on adult zebrafish: a comparative study. 3 Biotech 8, 441 (2018). https://doi.org/10.1007/s13205-018-1457-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s13205-018-1457-y

Keywords

Navigation