Log in

Exploring Microplastic Distribution in Agricultural Soils and Health Risk Evaluation

  • Published:
Water, Air, & Soil Pollution Aims and scope Submit manuscript

Abstract

Microplastic pollution in soil poses a growing environmental threat with far-reaching implications for ecosystems and human health. This study systematically investigated the distribution of microplastics (MPs) across various soil depths in diverse mulched agricultural fields. Soil samples were meticulously collected at three depths (0–5, 5–10, and 10–15 cm) from five distinct agricultural regions in Bangladesh. The analysis of MPs was conducted using Fourier Transform Infrared Spectroscopy (FTIR) and a fluorescent microscope. Notably, the results unveiled no discernible depth-related trends in MP concentration, displaying ranges of 0.13 ± 0.35 to 3.53 ± 1.77; 0 to 5.53 ± 2.36; and 0 to 4.07 ± 2.28 MPs/g of soil in 0–5 cm, 5–10 cm, and 10–15 cm, respectively. The soil exhibited a spectrum of microplastic types, including High-Density Polyethylene (HDPE), Polyethylene terephthalate (PET), Polypropylene (PP), Low-Density Polyethylene (LDPE), Poly Vinyl chloride (PVC), Poly Vinyl Alcohol (PVA), Poly vinyl fluoride (PVF), and Polytetrafluoroethylene (PTFE), ranging from 0.04 ± 0.21–3.71 ± 2.36 MPs/g of soil. Particularly, the industrial agricultural area displayed the highest microplastic concentration (12.89/g of soil). Further, Principal Component Analysis identified plastic mulch and organic manure as potential sources. Despite the presence of microplastic, the estimated concentrations indicated low risks to the farming community in Bangladesh. This research provides valuable insights into microplastic distribution in agricultural soils, enhancing our understanding of this form of pollution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data Availability

The data that support the findings of this study are available on request from the corresponding author. The data are not publicly available due to privacy or ethical restrictions.

References

  • Alimba, C. G., & Faggio, C. (2019). Microplastics in the marine environment: Current trends in environmental pollution and mechanisms of toxicological profile. Environmental Toxicology and Pharmacology, 68, 61–74. https://doi.org/10.1016/J.ETAP.2019.03.001

    Article  CAS  Google Scholar 

  • Astner, A. F., Hayes, D. G., O’Neill, H. O., Evans, B. R., **ali, S. V., Urban, V. S., & Young, T. M. (2019). Mechanical formation of micro– and nano–plastic materials for environmental studies in agricultural ecosystems. Science of the Total Environment, 685, 1097–1106. https://doi.org/10.1016/j.scitotenv.2019.06.241

    Article  CAS  Google Scholar 

  • Bhullar, S. K., Bedeloglu, A., & Martin, B. G. (2014). Characterization and Auxetic effect of Polytetrafluoroethylene Tubular structure. International Journal of Advanced Trends in Computer Science and Engineering, 1(2), 8–13. Retrieved from https://www.researchgate.net/publication/303752023. Accessed 17 Nov 2023

  • Chen, Y., Leng, Y., Liu, X., & Wang, J. (2020). Microplastic pollution in vegetable farmlands of suburb Wuhan, central China. Environmental Pollution, 257, 113449. https://doi.org/10.1016/j.envpol.2019.113449

    Article  CAS  Google Scholar 

  • China Statistics Bureau. (2012). China Statistical Yearbook. National Bureau of Statistics of China: Bei**g, China. p. 62791819

  • Corradini, F., Meza, P., Eguiluz, R., Casado, F., Huerta-Lwanga, E., & Geissen, V. (2019). Evidence of microplastic accumulation in agricultural soils from sewage sludge disposal. Science of the Total Environment, 671, 411–420. https://doi.org/10.1016/j.scitotenv.2019.03.368

    Article  CAS  Google Scholar 

  • Courtene-Jones, W., Quinn, B., Gary, S. F., Mogg, A. O., & Narayanaswamy, B. E. (2017). Microplastic pollution identified in deep-sea water and ingested by benthic invertebrates in the Rockall Trough, North Atlantic Ocean. Environmental Pollution, 231, 271–280. https://doi.org/10.1016/j.envpol.2017.08.026

  • de Souza Machado, A. A., Lau, C. W., Kloas, W., Bergmann, J., Bachelier, J. B., Faltin, E., Becker, R., Gorlich, A. S., & Rillig, M. C. (2019). Microplastics can change soil properties and affect plant performance. Environmental Science and Technology, 53(10), 6044–6052. https://doi.org/10.1021/acs.est.9b01339

    Article  CAS  Google Scholar 

  • Ding, L., Zhang, S., Wang, X., Yang, X., Zhang, C., Qi, Y., & Guo, X. (2020). The occurrence and distribution characteristics of microplastics in the agricultural soils of Shaanxi Province, in north–western China. Science of the Total Environment, 720, 137525. https://doi.org/10.1016/j.scitotenv.2020.137525

    Article  CAS  Google Scholar 

  • Doğan, Ö. M., & Kayacan, İ. (2008). Pyrolysis of Low and High Density Polyethylene Part II: Analysis of Liquid Products Using FTIR and NMR Spectroscopy. Energy Sources Part a: Recovery, Utilization, and Environmental Effects, 30(5), 392–400. https://doi.org/10.1080/1556703070145715

    Article  Google Scholar 

  • Enyoh, C. E., Qingyue, W., Verla, A. W., & Chowdhury, T. (2022a). Index models for ecological and health risks assessment of environmental micro-and nano-sized plastics. AIMS Environ. Sci., 9(1), 51–65. https://doi.org/10.3934/environsci.2022004

    Article  CAS  Google Scholar 

  • Enyoh, C.E., Verla A.W., Verla, E.N., & Enyoh, E.C., (2020). Effect of Macro– and Micro– Plastics in Soil on Quantitative Phytochemicals in Different Part of Juvenile Lime Tree (Citrus aurantium). International Journal of Environmental Research.

  • Enyoh, C. E., Verla, A. W., & Rakib, M. R. J. (2021). Application of index models for assessing freshwater microplastics pollution. World News Natural Sciences, 38, 37–48. Retrieved from https://www.researchgate.net/publication/353235887. Accessed 14 Nov 2023

  • Enyoh, C. E., Wang, Q., Rabin, M. H., Bakare, R. O., Dadiel, J. L., Shangrong, W., ... & Ilechukwu, I. (2023). Preliminary characterization and probabilistic risk assessment of microplastics and potentially toxic elements (PTEs) in garri (cassava flake), a common staple food consumed in West Africa. Environmental Analysis, Health and Toxicology, 38(1). https://doi.org/10.1016/j.jwpe.2023.103909

  • Enyoh, C. E., Wang, Q., Verla, A. W., & Chowdhury, T. (2022b). Index models for ecological and health risks assessment of environmental micro–and nano–sized plastics. AIMS Environmental Science, 9(1), 51–65. https://doi.org/10.3934/environsci.2022004

    Article  CAS  Google Scholar 

  • Fei, T. F., Huang, S. Y., Zhang, H. B., Tong, Y. Z., Wen, D. S., **a, X. Y., Wang, H., Lou, Y. M., & Barcelo, D. (2019). Response of soil enzyme activities and bacterial communities to the accumulation of microplastics in an acid cropped soil. Science of the Total Environment, 707, 135634. https://doi.org/10.1016/j.scitotenv.2019.135634

    Article  CAS  Google Scholar 

  • Geyer, R., Jambeck, J. R., & Law, K. L. (2017). Production, use, and fate of all plastics ever made. Science Advances, 3(7), e1700782. https://doi.org/10.1126/sciadv.1700782

    Article  CAS  Google Scholar 

  • Gies, E. A., LeNoble, J. L., Noël, M., Etemadifar, A., Bishay, F., Hall, E. R., & Ross, P. S. (2018). Retention of microplastics in a major secondary wastewater treatment plant in Vancouver, Canada. Marine Pollution Bulletin, 133, 553–561. https://doi.org/10.1016/j.marpolbul.2018.06.006

    Article  CAS  Google Scholar 

  • Hossain, M. N., Rahman, M. M., Afrin, S., Akbor, M. A., Siddique, A. B., & Malafaia, G. (2022). Identification and quantification of microplastics on agricultural farmland soil and textile sludge in Bangladesh. Science of the Total Environment, 858(3), 160118. https://doi.org/10.1016/j.scitotenv.2022.160118

  • Huang, Y., Liu, Q., Jia, W., Yan, C., & Wang, J. (2020). Agricultural plastic mulching as a source of microplastics in the terrestrial environment. Environmental Pollution, 260, 114096. https://doi.org/10.1016/j.envpol.2020.114096

    Article  CAS  Google Scholar 

  • Kabir, E. A. H. M., Masahiko, S., Tsuyoshi, I., Koichi, Y., Ariyo, K., & Takaya, H. (2021). Assessing small–scale freshwater microplastics pollution, land–use, source–to–sink conduits, and pollution risks: Perspectives from Japanese rivers polluted with microplastics. Science of the Total Environment, 768, 144655. https://doi.org/10.1016/j.scitotenv.2020.144655

    Article  CAS  Google Scholar 

  • Kader, M. A., Khan, F. H., Tulip, S. S., Mridha, M. A. H., & Jewel, A. (2021). Applicability of plastic mulch and conservation strip tillage for potato production in Bangladesh. SAINS TANAH-Journal of Soil Science and Agroclimatology, 18(2), 115–125.

    Article  Google Scholar 

  • Khatun, F., Saadat, S.Y., & Ashraf, K., (2023). Briefing Note. WRAPPED IN PLASTIC: The State of Plastic Pollution in Bangladesh. Centre for Policy Dialogue (CPD), House 40/C, Road 11 (new) Dhanmondi, Dhaka-1209, Bangladesh.

  • Li, W., Wufuer, R., Duo, J., Wang, S., Luo, Y., Zhang, D., & Pan, X. (2020). Microplastics in agricultural soils: Extraction and characterization after different periods of polythene film mulching in an arid region. Science of the Total Environment, 749, 141420. https://doi.org/10.1016/j.scitotenv.2020.141420

    Article  CAS  Google Scholar 

  • Lithner, D., Larsson, Å., & Dave, G. (2011). Environmental and health hazard ranking and assessment of plastic polymers based on chemical composition. Science of the Total Environment, 409(18), 3309–3324. https://doi.org/10.1016/j.scitotenv.2011.04.038

    Article  CAS  Google Scholar 

  • Liu, M., Lu, S., Song, Y., Lei, L., Hu, J., Lv, W., Zhou, W., Cao, C., Shi, H., Yang, X., & He, D. (2018). Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environmental Pollution, 242, 855–862. https://doi.org/10.1016/j.envpol.2018.07.051

    Article  CAS  Google Scholar 

  • Mazhar, M., Abdouss, M., Shariatinia, Z., & Zargaran, M. (2014). Graft copolymerization of methacrylic acid monomers onto polypropylene fibers. Chemical Industry and Chemical Engineering Quarterly, 20(1), 87–96. https://doi.org/10.2298/CICEQ120428104M

  • Nadiruzzaman, M. D., Shewly, H. J., & Esha, A. A. (2022). Dhaka sitting on a plastic bomb: Issues and concerns around waste governance, water quality, and public health. Earth, 3(1), 18–30.

    Article  Google Scholar 

  • Ng, E. L., Lwanga, E. H., Eldridge, S. M., Johnston, P., Hu, H. W., Geissen, V., & Chen, D. (2018). An overview of microplastic and nanoplastic pollution in agro–ecosystems. Science of the Total Environment, 627, 1377–1388. https://doi.org/10.1016/j.scitotenv.2018.01.341

    Article  CAS  Google Scholar 

  • Pandey, D., Banerjee, T., Badola, N., & Chauhan, J. S. (2022). Evidence of Microplastics in Aerosols and Street Dust: A Case Study of Varanasi City, India. Environmental Science and Pollution Research, 29, 82006–82013. https://doi.org/10.1007/S11356-022-21514-1/FIGURES/5

    Article  CAS  Google Scholar 

  • Park, J. H., Hong, S., Kim, O. H., Kim, C. H., Kim, J., Kim, J. W., Hong, S., & Lee, H. J. (2023). Polypropylene microplastics promote metastatic features in human breast cancer. Scientific Reports, 13(1), 6252.

    Article  CAS  Google Scholar 

  • Pereira, A. C., & Romero, F. (2017). A review of the meanings and the implications of the Industry 4.0 concept. Procedia Manufacturing, 13, 1206–1214. https://doi.org/10.1016/j.promfg.2017.09.032

  • Piehl, S., Leibner, A., Löder, M. G., Dris, R., Bogner, C., & Laforsch, C. (2018). Identification and quantification of macro–and microplastics on an agricultural farmland. Scientific Reports, 8, 17950. https://doi.org/10.1038/s41598-018-36172-y

    Article  CAS  Google Scholar 

  • Rabin, M. H., Wang, Q., Enyoh, C. E., Kai, X., & Sheuty, T. F. (2023). Distribution, Potential Sources, and Health Risk of Microplastics (MPs) in Street Dust during and after COVID-19 Lockdown in Bangladesh. Environments, 10(7), 130. https://doi.org/10.3390/environments10070130

  • Rillig, M. C. (2012). Microplastic in Terrestrial Ecosystems and the Soil? ACS Publications. https://doi.org/10.1021/es302011r

    Book  Google Scholar 

  • Scheurer, M., & Bigalke, M. (2018). Microplastics in Swiss floodplain soils. Environmental Science and Technology, 52(6), 3591–3598. https://doi.org/10.1021/acs.est.7b06003

    Article  CAS  Google Scholar 

  • Shakil, M. (2023). Mulching method gaining popularity among farmers. The Daily Star. Available at https://www.thedailystar.net/news/bangladesh/agriculture/news/mulching-method-gaining-popularity-among-farmers-3274816. Accessed 12 Nov 2023

  • Shim, W. J., Hong, S. H., & Eo, S. E. (2017). Identification methods in microplastic analysis: a review. Analytical Methods, 9(9), 1384–1391. https://doi.org/10.1039/C6AY02558G

  • Thompson, A. K., Hackett, C., Grady, T. L., Enyinnia, S., Moore, Q. C., & Nave, F. M. (2020). Development and Characterization of Membranes with PVA Containing Silver Particles: A Study of the Addition and Stability. Polymers, 12, 1937. https://doi.org/10.3390/polym12091937

    Article  CAS  Google Scholar 

  • USEPA. (2005). Guidelines for Carcinogen Risk Assessment; US Environmental Protection Agency: Washington, DC, USA. Accessed 23 Nov 2023

  • USEPA. (1992). Health Assessment Summary Tables. Annual FY-92. Prepared by the Office of Health and Environmental Assessment, Environmental Criteria and Assessment Office, Cincinnati, OH, for the Office of Emergency and Remedial Response, Washington, DC. Accessed 21 Nov 2023

  • USEPA. (2001a). Methods for Collection, Storage and Manipulation of Sediment for Chemical and Toxicological Analyses: Technical Manual. US Environmental Protection Agency: Washington, DC. Accessed 23 Nov 2023

  • USEPA. (2001b). Use of BW3_4 as Default Method in Derivation of the Oral RfD. US Environmental Protection Agency: Washington, DC, USA. Accessed 23 Nov 2023

  • Van den Berg, P., Huerta-Lwanga, E., Corradini, F., & Geissen, V. (2020). Sewage sludge application as a vehicle for microplastics in eastern Spanish agricultural soils. Environmental Pollution, 261, 114198. https://doi.org/10.1016/j.envpol.2020.114198

    Article  CAS  Google Scholar 

  • Van den Berg, R., (1995). Human Exposure to Soil Contamination: A Qualitative and Quantitative Analysis towards Proposals for Human Toxicology C-Standard Values; Report No.7252010; National Institute of Public Health and Environmental Protection: Bilthoven, The Netherlands.

  • Wang, Q., Enyoh, C. E., Chowdhury, T., & Chowdhury, M. A. H. (2020). Analytical Techniques, Occurrence and Health Effects of Micro and Nano Plastics Deposited in Street Dust. International Journal of Environmental Analytical Chemistry, 102, 6435–6453. https://doi.org/10.1080/03067319.2020.1811262

    Article  CAS  Google Scholar 

  • Weithmann, N., Möller, J.N., Löder, M.G., Piehl, S., Laforsch, C., & Freitag, R., (2018). Organic fertilizer as a vehicle for the entry of microplastic into the environment. Science Advances, 4, eaap8060. https://doi.org/10.1126/sciadv.aap8060.

  • Yang, X., Bento, C. P., Chen, H., Zhang, H., Xue, S., Lwanga, E. H., Zomer, P., Ritsema, C. J., & Geissen, V. (2018). Influence of microplastic addition on glyphosate decay and soil microbial activities in Chinese loess soil. Environmental Pollution, 242, 338–347.

    Article  CAS  Google Scholar 

  • Yoshijima, S., Nishat, B., Yi, E. J. A., Kumar, M., Montoya, D. P., & Hayashi, S. (2021). Towards a Multisectoral Action Plan for Sustainable Plastic Management in Bangladesh (Vol. 3, p. 21). World Bank Group

  • Zhao, S., Zhang, Z., Chen, L., Cui, Q., Cui, Y., Song, D., & Fang, L. (2022). Review on migration, transformation and ecological impacts of microplastics in soil. Applied Soil Ecology, 176, 104486. https://doi.org/10.1016/j.apsoil.2022.104486

    Article  Google Scholar 

  • Zheng, N., Liu, J., Wang, Q., & Liang, Z. (2010). Heavy Metals Exposure of Children from Stairway and Sidewalk Dust in the Smelting District. Northeast of China. Atmos. Environ., 2010(44), 3239–3245. https://doi.org/10.1016/j.atmosenv.2010.06.002

    Article  CAS  Google Scholar 

  • Zhou, B., Wang, J., Zhang, H., Shi, H., Fei, Y., Huang, S., Tong, Y., Dishi Wen, D., Luo, Y., & Barceló, D. (2020). Microplastics in agricultural soils on the coastal plain of Hangzhou Bay, east China: Multiple sources other than plastic mulching film. Journal of Hazardous Materials, 388, 121814. https://doi.org/10.1016/j.jhazmat.2019.121814

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Not applicable

Funding

This study was partially supported by the Special Funds for Innovative Area Research (No.20120015, FY 2008–FY2012) and Basic Research (B) (No. 24310005, FY2012–FY2014; No.18H03384, FY2017–FY2020; No.22H03747, FY2022–FY2024) of Grant–in–Aid for Scientific Research of Japanese Ministry of Education, Culture, Sports, Science and Technology (MEXT).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sumaya Sharmin.

Ethics declarations

Competing Interests

Authors have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmin, S., Wang, Q., Islam, M.R. et al. Exploring Microplastic Distribution in Agricultural Soils and Health Risk Evaluation. Water Air Soil Pollut 235, 511 (2024). https://doi.org/10.1007/s11270-024-07304-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11270-024-07304-0

Keywords

Navigation