Recent Developments in Extraction, Identification, and Quantification of Microplastics from Agricultural Soil and Groundwater

  • Chapter
  • First Online:
Fate and Transport of Subsurface Pollutants

Part of the book series: Microorganisms for Sustainability ((MICRO,volume 24))

Abstract

Microplastics have become a threat to the environment in recent years, and its adverse effect has direct impact on animals and human beings because of its accumulation in the environment. This chapter mainly deals with the source and contamination of microplastics in the agricultural soil and groundwater. Moreover, the experimental approach has been adopted to extract and investigate the presence of microplastics in the soil and groundwater and to classify microplastics based on their physical appearances, such as mass, shape, size, color, and chemical properties like diversity of microplastics characterized using Raman spectroscopy as well as Fourier transform infrared spectroscopy. Sources of microplastics have been reported either in the aquatic environment or in the terrestrial ecosystem, which is widely described and noted down with respective experimental techniques for identification and quantification of microplastics in this chapter. Agricultural soils were stated to be dum** sites for waste collected from households in rural, urban, and industrial areas. Therefore, sewage sludge, industrial effluents, paints, discarded plastics, households materials, and fertilizers are common contributors of microplastics in agricultural soils and groundwater either through biological agents or vertical transport into aquifers. This chapter highlights the source, extraction approach, and quantification techniques for microplastics being applied in numerous research across the globe. The presence of microplastics in soil is affecting soil properties such as water infiltration capacity, bulk density, microbial activity, and soil structure. The chapter analytically argues the recent progress in various extraction, identification, and quantification process aims to identify the pertinent gaps in agricultural soils and groundwater and offers possible solutions by briefing the ongoing investigation to preclude these gaps through applicable scientific interventions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 160.49
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 213.99
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info
Hardcover Book
EUR 213.99
Price includes VAT (Germany)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Ali MI, Ahmed S, Robson G et al (2014) Isolation and molecular characterization of polyvinyl chloride (PVC) plastic degrading fungal isolates. J Basic Microbiol 54(1):18–27

    CAS  PubMed  Google Scholar 

  • Andrady AL (2011) Microplastics in the marine environment. Mar Pollut Bull 62(8):1596–1605

    CAS  PubMed  Google Scholar 

  • Arkatkar A, Arutchelvi J, Bhaduri S et al (2009) Degradation of unpretreated and thermally pretreated polypropylene by soil consortia. Int Biodeterior Biodegradation 63(1):106–111

    CAS  Google Scholar 

  • Ashton K, Holmes L, Turner A (2010) Association of metals with plastic production pellets in the marine environment. Mar Pollut Bull 60(11):2050–2055

    CAS  PubMed  Google Scholar 

  • Bento CP, Goossens D, Rezaei M et al (2017) Glyphosate and AMPA distribution in wind-eroded sediment derived from loess soil. Environ Pollut 220:1079–1089

    CAS  PubMed  Google Scholar 

  • Blaesing M, Amelung W (2018) Plastics in soil: analytical methods and possible sources. Sci Total Environ 612:422–435

    CAS  Google Scholar 

  • Bour A, Haarr A, Keiter S et al (2018) Environmentally relevant microplastic exposure affects sediment-dwelling bivalves. Environ Pollut 236:652–660

    CAS  PubMed  Google Scholar 

  • Brennecke D, Duarte B, Paiva F et al (2016) Microplastics as vector for heavy metal contamination from the marine environment. Estuar Coast Shelf Sci 178:189–195

    CAS  Google Scholar 

  • Brodhagen M, Goldberger JR, Hayes DG et al (2017) Policy considerations for limiting unintended residual plastic in agricultural soils. Environ Sci Pol 69:81–84

    Google Scholar 

  • Brown DM, Cheng L (1981) New net for sampling the ocean surface. Mar Ecol Prog Ser 5:225–227

    Google Scholar 

  • Claessens M, Van Cauwenberghe L, Vandegehuchte MB et al (2013) New techniques for the detection of microplastics in sediments and field collected organisms. Mar Pollut Bull 70(1-2):227–233

    CAS  PubMed  Google Scholar 

  • Coors A, Edwards M, Lorenz P et al (2016) Biosolids applied to agricultural land: influence on structural and functional endpoints of soil fauna on a short-and long-term scale. Sci Total Environ 562:312–326

    CAS  PubMed  Google Scholar 

  • Corradini F, Bartholomeus H, Lwanga EH et al (2019) Predicting soil microplastic concentration using vis-NIR spectroscopy. Sci Total Environ 650:922–932

    CAS  PubMed  Google Scholar 

  • da Costa JP (2018) Micro-and nanoplastics in the environment: research and policymaking. Curr Opin Environ Sci Health 1:12–16

    Google Scholar 

  • de Souza Machado AA, Kloas W, Zarfl C et al (2018a) Microplastics as an emerging threat to terrestrial ecosystems. Glob Chang Biol 24(4):1405–1416

    PubMed  PubMed Central  Google Scholar 

  • de Souza Machado AA, Lau CW, Till J et al (2018b) Impacts of microplastics on the soil biophysical environment. Environ Sci Technol 52(17):9656–9665

    PubMed  PubMed Central  Google Scholar 

  • de Souza Machado AA, Lau CW, Kloas W et al (2019) Microplastics can change soil properties and affect plant performance. Environ Sci Technol 53:6044–6052

    PubMed  Google Scholar 

  • Ding L, Fan Mao R, Guo X et al (2019) Microplastics in surface waters and sediments of the Wei River, in the northwest of China. Sci Total Environ 667:427–434

    CAS  PubMed  Google Scholar 

  • Dris R, Gasperi J, Rocher V et al (2015a) Microplastic contamination in an urban area: a case study in Greater Paris. Environ Chem 12(5):592–599

    CAS  Google Scholar 

  • Dris R, Imhof H, Sanchez W et al (2015b) Beyond the ocean: contamination of freshwater ecosystems with (micro-) plastic particles. Environ Chem 12(5):539–550

    CAS  Google Scholar 

  • Dris R, Gasperi J, Saad M et al (2016) Synthetic fibers in atmospheric fallout: a source of microplastics in the environment? Mar Pollut Bull 104(1-2):290–293

    CAS  PubMed  Google Scholar 

  • Duis K, Coors A (2016) Microplastics in the aquatic and terrestrial environment: sources (with a specific focus on personal care products), fate and effects. Environ Sci Eur 28(1):2

    PubMed  PubMed Central  Google Scholar 

  • Dümichen E, Barthel A-K, Braun U et al (2015) Analysis of polyethylene microplastics in environmental samples, using a thermal decomposition method. Water Res 85:451–457

    PubMed  Google Scholar 

  • Dümichen E, Eisentraut P, Bannick CG et al (2017) Fast identification of microplastics in complex environmental samples by a thermal degradation method. Chemosphere 174:572–584

    PubMed  Google Scholar 

  • Eerkes-Medrano D, Thompson RC, Aldridge DC (2015) Microplastics in freshwater systems: a review of the emerging threats, identification of knowledge gaps and prioritisation of research needs. Water Res 75:63–82

    CAS  PubMed  Google Scholar 

  • Fendall LS, Sewell MA (2009) Contributing to marine pollution by washing your face: microplastics in facial cleansers. Mar Pollut Bull 58(8):1225–1228

    CAS  PubMed  Google Scholar 

  • Free CM, Jensen OP, Mason SA et al (2014) High-levels of microplastic pollution in a large, remote, mountain lake. Mar Pollut Bull 85(1):156–163

    CAS  PubMed  Google Scholar 

  • Fries E, Dekiff JH, Willmeyer J et al (2013) Identification of polymer types and additives in marine microplastic particles using pyrolysis-GC/MS and scanning electron microscopy. Environ Sci: Processes Impacts 15(10):1949–1956

    CAS  Google Scholar 

  • Fuller S, Gautam A (2016) A procedure for measuring microplastics using pressurized fluid extraction. Environ Sci Technol 50(11):5774–5780

    CAS  PubMed  Google Scholar 

  • Gasperi J, Wright SL, Dris R et al (2018) Microplastics in air: are we breathing it in? Curr Opin Environ Sci Health 1:1–5

    Google Scholar 

  • Grbic J, Nguyen B, Guo E et al (2019) Magnetic extraction of microplastics from environmental samples. Environ Sci Technol Lett 6(2):68–72

    CAS  Google Scholar 

  • Hadad D, Geresh S, Sivan A (2005) Biodegradation of polyethylene by the thermophilic bacterium Brevibacillus borstelensis. J Appl Microbiol 98(5):1093–1100

    CAS  PubMed  Google Scholar 

  • Hartmann NB, Rist S, Bodin J et al (2017) Microplastics as vectors for environmental contaminants: exploring sorption, desorption, and transfer to biota. Integr Environ Assess Manag 13(3):488–493

    PubMed  Google Scholar 

  • Hegan D, Tong L, Zhiquan H et al (2015) Determining time limits of continuous film mulching and examining residual effects on cotton yield and soil properties. J Environ Biol 36(3):677

    Google Scholar 

  • Henry B, Laitala K, Klepp IG (2019) Microfibres from apparel and home textiles: prospects for including microplastics in environmental sustainability assessment. Sci Total Environ 652:483–494

    PubMed  Google Scholar 

  • Hernandez E, Nowack B, Mitrano DM (2017) Polyester textiles as a source of microplastics from households: a mechanistic study to understand microfiber release during washing. Environ Sci Technol 51(12):7036–7046

    CAS  PubMed  Google Scholar 

  • Hidalgo-Ruz V, Gutow L, Thompson RC et al (2012) Microplastics in the marine environment: a review of the methods used for identification and quantification. Environ Sci Technol 46(6):3060–3075

    CAS  PubMed  Google Scholar 

  • Holmes LA, Turner A, Thompson RC (2012) Adsorption of trace metals to plastic resin pellets in the marine environment. Environ Pollut 160:42–48

    CAS  PubMed  Google Scholar 

  • Horton AA, Dixon SJ (2018) Microplastics: An introduction to environmental transport processes. Wiley Interdiscip Rev Water 5(2):e1268

    Google Scholar 

  • Horton AA, Svendsen C, Williams RJ et al (2017) Large microplastic particles in sediments of tributaries of the River Thames, UK–abundance, sources and methods for effective quantification. Mar Pollut Bull 114(1):218–226

    CAS  PubMed  Google Scholar 

  • Hurley RR, Nizzetto L (2018) Fate and occurrence of micro (nano) plastics in soils: knowledge gaps and possible risks. Curr Opin Environ Sci Health 1:6–11

    Google Scholar 

  • Hurley RR, Lusher AL, Olsen M et al (2018) Validation of a method for extracting microplastics from complex, organic-rich, environmental matrices. Environ Sci Technol 52(13):7409–7417

    CAS  PubMed  Google Scholar 

  • Jiang XJ, Liu W, Wang E et al (2017) Residual plastic mulch fragments effects on soil physical properties and water flow behavior in the Minqin Oasis, northwestern China. Soil Tillage Res 166:100–107

    Google Scholar 

  • Kataoka T, Nihei Y, Kudou K, Hinata H (2019) Assessment of the sources and inflow processes of microplastics in the river environments of Japan. Environ Pollut 244:958–965

    Google Scholar 

  • Koelmans AA, Besseling E, Foekema E et al (2017) Risks of plastic debris: unravelling fact, opinion, perception, and belief. Environ Sci Technol 51(20):11513–11519

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lambert S, Wanger M (2018) Microplastics are contaminants of emerging concern in freshwater environments: an overview. In: Lambert S, Wanger M (eds) Freshwater microplastics. Springer, Cham, pp 1–23. https://doi.org/10.1007/978-3-319-61615-5

    Chapter  Google Scholar 

  • Lee H, Shim WJ, Kwon J-H (2014) Sorption capacity of plastic debris for hydrophobic organic chemicals. Sci Total Environ 470:1545–1552

    PubMed  Google Scholar 

  • Lehmann A, Zheng W, Rillig MC (2017) Soil biota contributions to soil aggregation. Nat Ecol Evol 1(12):1828

    PubMed  PubMed Central  Google Scholar 

  • Lehner R, Weder C, Petri-Fink A et al (2019) Emergence of nanoplastic in the environment and possible impact on human health. Environ Sci Technol 53(4):1748–1765

    CAS  PubMed  Google Scholar 

  • Li H X, Ma L S, Lin L et al (2018a) Microplastics in oysters saccostrea cucullata along the Pearl River estuary, China. Environ Pollut 236:619–625

    Google Scholar 

  • Li J, Zhang K, Zhang H (2018b) Adsorption of antibiotics on microplastics. Environ Pollut 237:460–467

    CAS  PubMed  Google Scholar 

  • Li X, Chen L, Mei Q et al (2018c) Microplastics in sewage sludge from the wastewater treatment plants in China. Water Res 142:75–85

    CAS  PubMed  Google Scholar 

  • Liedermann M, Gmeiner P, Pessenlehner S, Haimann M, Hohenblum P, Habersack H (2018) A methodology for measuring microplastic transport in large or medium rivers. Water 10(4):414

    Google Scholar 

  • Lin L, Zuo L-Z, Peng J-P et al (2018) Occurrence and distribution of microplastics in an urban river: a case study in the Pearl River along Guangzhou City, China. Sci Total Environ 644:375–381

    CAS  PubMed  Google Scholar 

  • Liu H, Yang X, Liu G et al (2017) Response of soil dissolved organic matter to microplastic addition in Chinese loess soil. Chemosphere 185:907–917

    CAS  PubMed  Google Scholar 

  • Liu M, Lu S, Song Y et al (2018) Microplastic and mesoplastic pollution in farmland soils in suburbs of Shanghai, China. Environ Pollut 242:855–862

    CAS  PubMed  Google Scholar 

  • Liu M, Song Y, Lu S et al (2019) A method for extracting soil microplastics through circulation of sodium bromide solutions. Sci Total Environ 691:341–347

    CAS  PubMed  Google Scholar 

  • Löder MGJ, Gerdts G (2015) Methodology used for the detection and identification of microplastics—a critical appraisal. In: Marine anthropogenic litter. Springer, Cham, pp 201–227. https://doi.org/10.1007/978-3-319-16510-3_8

    Chapter  Google Scholar 

  • Löder MGJ, Kuczera M, Mintenig S et al (2015) Focal plane array detector-based micro-Fourier-transform infrared imaging for the analysis of microplastics in environmental samples. Environ Chem 12(5):563–581

    Google Scholar 

  • Lwanga EH, Gertsen H, Gooren H et al (2016) Microplastics in the terrestrial ecosystem: implications for Lumbricus terrestris (Oligochaeta, Lumbricidae). Environ Sci Technol 50(5):2685–2691

    Google Scholar 

  • Lwanga EH, Gertsen H, Gooren H et al (2017) Incorporation of microplastics from litter into burrows of Lumbricus terrestris. Environ Pollut 220:523–531

    Google Scholar 

  • Lwanga EH, Thapa B, Yang X et al (2018) Decay of low-density polyethylene by bacteria extracted from earthworm’s guts: a potential for soil restoration. Sci Total Environ 624:753–757

    Google Scholar 

  • Magnusson K, Norén F (2014) Screening of microplastic particles in and down-stream a wastewater treatment plant. IVL Swedish Environmental Research Institute, C 55. https://www.diva-portal.org/smash/get/diva2:773505/FULLTEXT01.pdf. Accessed 9 Sept 2019

  • Mahon AM, O’Connell B, Healy MG et al (2016) Microplastics in sewage sludge: effects of treatment. Environ Sci Technol 51(2):810–818

    PubMed  Google Scholar 

  • Mintenig S, Int-Veen I, Löder MG et al (2017) Identification of microplastic in effluents of waste water treatment plants using focal plane array-based micro-Fourier-transform infrared imaging. Water Res 108:365–372

    CAS  PubMed  Google Scholar 

  • Mintenig S, Löder M, Primpke S et al (2019) Low numbers of microplastics detected in drinking water from ground water sources. Sci Total Environ 648:631–635

    CAS  PubMed  Google Scholar 

  • Napper IE, Thompson RC (2016) Release of synthetic microplastic plastic fibres from domestic washing machines: effects of fabric type and washing conditions. Mar Pollut Bull 112(1-2):39–45

    CAS  PubMed  Google Scholar 

  • Napper IE, Bakir A, Rowland SJ et al (2015) Characterisation, quantity and sorptive properties of microplastics extracted from cosmetics. Mar Pollut Bull 99(1-2):178–185

    CAS  PubMed  Google Scholar 

  • Nizzetto L, Langaas S, Futter M (2016) Pollution: do microplastics spill on to farm soils? Nature 537(7621):488

    CAS  PubMed  Google Scholar 

  • Nuelle M-T, Dekiff JH, Remy D et al (2014) A new analytical approach for monitoring microplastics in marine sediments. Environ Pollut 184:161–169

    CAS  PubMed  Google Scholar 

  • Panno SV, Kelly WR, Scott J et al (2019) Microplastic contamination in karst groundwater systems. Groundwater 57(2):189–196

    CAS  Google Scholar 

  • Pivokonsky M, Cermakova L, Novotna K et al (2018) Occurrence of microplastics in raw and treated drinking water. Sci Total Environ 643:1644–1651

    CAS  PubMed  Google Scholar 

  • PlasticEurope (2018) Plastics – the Facts 2018: an analysis of European plastics production, demand and waste data. https://www.plasticseurope.org/en/resources/publications/619-plastics-facts-2018. Accessed 15 Mar 2019

  • Qi Y, Yang X, Pelaez AM et al (2018) Macro-and micro-plastics in soil-plant system: effects of plastic mulch film residues on wheat (Triticum aestivum) growth. Sci Total Environ 645:1048–1056

    CAS  PubMed  Google Scholar 

  • Qian X, Shen G, Wu T et al (2010) Application history and pollution control strategy of agrochemicals in Shanghai. Environ Sci Technol 33(12):184–187

    Google Scholar 

  • Qin Y (2014) Global fibres overview. Synthetic Fibres Raw Materials Committee Meeting at APIC, Pattaya City

    Google Scholar 

  • Quinn B, Murphy F, Ewins C (2017) Validation of density separation for the rapid recovery of microplastics from sediment. Anal Methods 9(9):1491–1498

    CAS  Google Scholar 

  • Re V (2019) Shedding light on the invisible: addressing the potential for groundwater contamination by plastic microfibers. Hydrogeol J 27:2719–2727

    Google Scholar 

  • Revel M, Châtel A, Mouneyrac C (2018) Micro (nano) plastics: a threat to human health? Curr Opin Environ Sci Health 1:17–23

    Google Scholar 

  • Rezaei M, Riksen MJ, Sirjani E et al (2019) Wind erosion as a driver for transport of light density microplastics. Sci Total Environ 669:273–281

    CAS  PubMed  Google Scholar 

  • Rillig MC, Muller LA, Lehmann A (2017a) Soil aggregates as massively concurrent evolutionary incubators. ISME J 11(9):1943

    PubMed  PubMed Central  Google Scholar 

  • Rillig MC, Ziersch L, Hempel S (2017b) Microplastic transport in soil by earthworms. Sci Rep 7(1):1362

    PubMed  PubMed Central  Google Scholar 

  • Rillig MC, de Souza Machado AA, Lehmann A et al (2019) Evolutionary implications of microplastics for soil biota. Environ Chem 16(1):3–7

    CAS  PubMed  Google Scholar 

  • Rochman CM (2018) Microplastics research—from sink to source. Science 360(6384):28–29

    CAS  PubMed  Google Scholar 

  • Rochman CM, Hentschel BT, Teh SJ (2014) Long-term sorption of metals is similar among plastic types: implications for plastic debris in aquatic environments. PLoS One 9(1):e85433

    PubMed  PubMed Central  Google Scholar 

  • Sadri SS, Thompson RC (2014) On the quantity and composition of floating plastic debris entering and leaving the Tamar Estuary, Southwest England. Mar Pollut Bull 81(1):55–60

    CAS  PubMed  Google Scholar 

  • Sajiki J, Yonekubo J (2003) Leaching of bisphenol A (BPA) to seawater from polycarbonate plastic and its degradation by reactive oxygen species. Chemosphere 51(1):55–62

    CAS  PubMed  Google Scholar 

  • Santana V, Goncalves S, Agnelli J et al (2012) Biodegradation of a polylactic acid/polyvinyl chloride blend in soil. J Appl Polym Sci 125(1):536–540

    CAS  Google Scholar 

  • Scheurer M, Bigalke M (2018) Microplastics in Swiss floodplain soils. Environ Sci Technol 52(6):3591–3598

    CAS  PubMed  Google Scholar 

  • Schmidt JE, Christensen N, Batstone DJ et al (2006) Safe recycling of sewage sludge on agricultural land—biowaste. Process Saf Environ Prot 84(4):253–257

    CAS  Google Scholar 

  • Selke S, Auras R, Nguyen TA et al (2015) Evaluation of biodegradation-promoting additives for plastics. Environ Sci Technol 49(6):3769–3777

    CAS  PubMed  Google Scholar 

  • Simon-Sánchez L, Grelaud M, Garcia-Orellana J et al (2019) River Deltas as hotspots of microplastic accumulation: the case study of the Ebro River (NW Mediterranean). Sci Total Environ 687:1186–1196

    PubMed  Google Scholar 

  • Song YK, Hong SH, Jang M et al (2017) Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ Sci Technol 51(8):4368–4376

    CAS  PubMed  Google Scholar 

  • Song Z, Yang X, Chen F et al (2019) Fate and transport of nanoplastics in complex natural aquifer media: effect of particle size and surface functionalization. Sci Total Environ 669:120–128

    CAS  PubMed  Google Scholar 

  • Su L, Cai H, Kolandhasamy P et al (2018) Using the Asian clam as an indicator of microplastic pollution in freshwater ecosystems. Environ Pollut 234:347–355

    CAS  PubMed  Google Scholar 

  • Sujathan S, Kniggendorf A-K, Kumar A et al (2017) Heat and bleach: a cost-efficient method for extracting microplastics from return activated sludge. Arch Environ Contam Toxicol 73(4):641–648

    CAS  PubMed  Google Scholar 

  • Thompson RC, Olsen Y, Mitchell RP, Davis A, Rowland SJ, John AW, McGonigle D, Russell AE (2004) Lost at sea: where is all the plastic? Science (Washington) 304(5672):838

    Google Scholar 

  • Van Cauwenberghe L, Devriese L, Galgani F et al (2015) Microplastics in sediments: a review of techniques, occurrence and effects. Mar Environ Res 111:5–17

    PubMed  Google Scholar 

  • Veresoglou SD, Halley JM, Rillig MC (2015) Extinction risk of soil biota. Nat Commun 6:8862

    CAS  PubMed  Google Scholar 

  • Wang Z, Taylor SE, Sharma P, Flury M, Mukherjee A (2018) Poor extraction efficiencies of polystyrene nano- and microplastics from biosolids and soil. PLoS One 13(11):e0208009

    Google Scholar 

  • Watteau F, Dignac M-F, Bouchard A et al (2018) Microplastic detection in soil amended with municipal solid waste composts as revealed by transmission electronic microscopy and pyrolysis/GC/MS. Front Sustain Food Syst 2:81

    Google Scholar 

  • Weithmann N, Möller JN, Löder MG et al (2018) Organic fertilizer as a vehicle for the entry of microplastic into the environment. Sci Adv 4(4):eaap8060

    PubMed  PubMed Central  Google Scholar 

  • Wright SL, Kelly FJ (2017) Plastic and human health: a micro issue? Environ Sci Technol 51(12):6634–6647

    CAS  PubMed  Google Scholar 

  • **ong X, Zhang K, Chen X et al (2018) Sources and distribution of microplastics in China’s largest inland lake–Qinghai Lake. Environ Pollut 235:899–906

    CAS  PubMed  Google Scholar 

  • Yoshida S, Hiraga K, Takehana T et al (2016) A bacterium that degrades and assimilates poly (ethylene terephthalate). Science 351(6278):1196–1199

    CAS  PubMed  Google Scholar 

  • Yu M, van der Ploeg M, Lwanga EH et al (2018) Can microplastics leach to groundwater? Proceedings of the global symposium on soil pollution. Rome, Italy. Food and Agriculture Organization of the United Nations, p 112

    Google Scholar 

  • Yu J, Wang P, Ni F et al (2019) Characterization of microplastics in environment by thermal gravimetric analysis coupled with Fourier transform infrared spectroscopy. Mar Pollut Bull 145:153–160

    CAS  PubMed  Google Scholar 

  • Zbyszewski M, Corcoran PL, Hockin A (2014) Comparison of the distribution and degradation of plastic debris along shorelines of the Great Lakes, North America. J Great Lakes Res 40(2):288–299

    CAS  Google Scholar 

  • Zhang H (2017) Transport of microplastics in coastal seas. Estuar Coast Shelf Sci 199:74–86

    Google Scholar 

  • Zhang GS, Liu YF (2018) The distribution of microplastics in soil aggregate fractions in southwestern China. Sci Total Environ 642:12–20

    CAS  PubMed  Google Scholar 

  • Zhang Z, Sheng L, Yang J et al (2015) Effects of land use and slope gradient on soil erosion in a red soil hilly watershed of southern China. Sustainability 7(10):14309–14325

    Google Scholar 

  • Zhang D, H-b L, Hu W-l et al (2016) The status and distribution characteristics of residual mulching film in **njiang, China. J Integr Agric 15(11):2639–2646

    Google Scholar 

  • Zhang S, Yang X, Gertsen H et al (2018) A simple method for the extraction and identification of light density microplastics from soil. Sci Total Environ 616:1056–1065

    PubMed  Google Scholar 

  • Zhao J, Liu L, Zhang Y et al (2018) A novel way to rapidly monitor microplastics in soil by hyperspectral imaging technology and chemometrics. Environ Pollut 238:121–129

    PubMed  Google Scholar 

  • Zhou Q, Zhang H, Zhou Y et al (2016) Separation of microplastics from a coastal soil and their surface microscopic features. Chin Sci Bull 61(14):1604–1611

    Google Scholar 

  • Zhou Q, Zhang H, Fu C et al (2018) The distribution and morphology of microplastics in coastal soils adjacent to the Bohai Sea and the Yellow Sea. Geoderma 322:201–208

    CAS  Google Scholar 

  • Zhu D, Chen Q-L, An X-L et al (2018) Exposure of soil collembolans to microplastics perturbs their gut microbiota and alters their isotopic composition. Soil Biol Biochem 116:302–310

    CAS  Google Scholar 

  • Ziajahromi S, Neale PA, Rintoul L et al (2017) Wastewater treatment plants as a pathway for microplastics: development of a new approach to sample wastewater-based microplastics. Water Res 112:93–99

    CAS  PubMed  Google Scholar 

  • Zubris KAV, Richards BK (2005) Synthetic fibers as an indicator of land application of sludge. Environ Pollut 138(2):201–211

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Prabhakar Sharma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, R., Sharma, P. (2021). Recent Developments in Extraction, Identification, and Quantification of Microplastics from Agricultural Soil and Groundwater. In: Gupta, P.K., Bharagava, R.N. (eds) Fate and Transport of Subsurface Pollutants. Microorganisms for Sustainability, vol 24. Springer, Singapore. https://doi.org/10.1007/978-981-15-6564-9_7

Download citation

Publish with us

Policies and ethics

Navigation