Log in

Structures, electronic and magnetic properties of transition metal inserted W6O18 clusters

  • Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

Structures, electronic, and magnetic properties of transition metal (TM) inserted W6O18 clusters have been investigated by using density functional theory. The Ti@W6O18, Ni@W6O18, Zr@W6O18, Rh@W6O18, W@W6O18, and Ir@W6O18 clusters are more structurally stable while the V@W6O18, Fe@W6O18, Zn@W6O18, Y@W6O18, Nb@W6O18, Pd@W6O18, La@W6O18, Re@W6O18, Hg@W6O18 clusters are more chemically stable. The amount of charge transfer between the TM atoms and W6O18 clusters decreases with the increase of the subgroup number except for subgroup number is equal to 11 and 12. The d orbital of the 3d TM@W6O18 clusters start to make the main contributions to Fermi level except for the Cu@W6O18 and Zn@W6O18 clusters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The online version contains supplementary material. Final Coordinates (Angstroms) of the W6O18 and TM@W6O18 (TM = Sc ~ Zn and Re) clusters have been listed in supplementary material section.

References

  1. Sai L, Tang L, Huang X, Chen G, Zhao J, Wang J (2012) Lowest-energy structures of (WO3)n (2≤n≤12) clusters from first-principles global search. Chem Phys Lett 544:7–12

    Article  CAS  Google Scholar 

  2. Kruger P, Koutiri I, Bourgeois S (2012) First-principles study of hexagonal tungsten trioxide: nature of lattice distortions and effect of potassium do**. Phys Rev B 86:224102 (6 pages)

  3. Pagnier T, Pasturel A (2003) An ab initio study of WO3 under pressure up to 30 GPa. J Phys: Condens Matter 15:3121–3133

    CAS  Google Scholar 

  4. Walkingshaw AD, Spaldin NA, Artacho E (2004) Density-functional study of charge do** in WO3, Phys Rev B 70:165110 (7 pages)

  5. ** H, Zhu J, Hu J, Li Y, Zhang Y, Huang X, Ding K, Chen W (2011) Structural and electronic properties of tungsten trioxides: from cluster to solid surface. Theor Chem Acc 130:103–114

    Article  CAS  Google Scholar 

  6. Zhai H-J, Huang X, Cui L-F, Li X, Li J, Wang L-S (2005) Electronic and structural evolution and chemical bonding in ditungsten oxide clusters: W2On- and W2On (n=1-6). J Phys Chem A 109:6019–6030

    Article  CAS  PubMed  Google Scholar 

  7. Li Z, Fang Z, Kelley MS, Kay BD, Rousseau R, Dohnalek Z, Dixon DA (2014) Ethanol conversion on cyclic (MO3)3 (M = Mo, W) clusters. J Phys Chem C 118:4869–4877

    Article  CAS  Google Scholar 

  8. Fujioka Y, Frantti J, Nieminen RM, Asiri AM (2013) Formation of ruthenium cluster on nanocrystalline tungsten trioxide. J Phys Chem C 117:7506–7510

    Article  CAS  Google Scholar 

  9. Li D, Huang W-Q, **e Z, Xu L, Yang Y-C, Hu W, Huang G-F (2016) Mechanism of enhanced photocatalytic activities on tungsten trioxide doped with sulfur: dopant-type effects, Mod Phys Lett B 30:1650340 (21 pages)

  10. Karuppasamy A (2015) Electrochromism and photocatalysis in dendrite structured Ti:WO3 thin films grown by sputtering. Appl Surf Sci 359:841–846

    Article  CAS  Google Scholar 

  11. Karuppasamy KM, Subrahmanyam A (2008) The electrochromic and photocatalytic properties of electron beam evaporated vanadium-doped tungsten oxide thin films. Sol Energy Mater Sol Cells 92:1322–1326

    Article  Google Scholar 

  12. Cheng XF, Leng WH, Liu DP, Zhang JQ, Cao CN (2007) Enhanced photoelectrocatalytic performance of Zn-doped WO3 photocatalysts for nitrite ions degradation under visible light. Chemosphere 68:1976–1984

    Article  CAS  PubMed  Google Scholar 

  13. Song XC, Yang E, Liu G, Zhang Y, Liu ZS, Chen HF, Wang Y (2010) Preparation and photocatalytic activity of Mo-doped WO3 nanowires. J Nanopart Res 12:2813–2819

    Article  CAS  Google Scholar 

  14. Mal P, Bera G, Rambabu P, Turpu GR, Chakraborty B, Ramaniah LM, Singh RP, Sen P, Das P (2017) Electronic, magnetic and spectroscopic properties of doped Mn(1−x)AxWO4 (A = Co, Cu, Ni and Fe) multiferroic: an experimental and DFT study, J Phys: Condens Matter 29:075901 (10 pages)

  15. Hameed A, Gondal MA, Yamani ZH (2004) Effect of transition metal do** on photocatalytic activity of WO3 for water splitting under laser illumination: role of 3d-orbitals. Catal Commun 5:715–719

    Article  CAS  Google Scholar 

  16. Kim YK, Dohnalek Z, Kay BD, Rousseau R (2009) Competitive oxidation and reduction of aliphatic alcohols over (WO3)3 clusters. J Phys Chem C 113:9721–9730

    Article  CAS  Google Scholar 

  17. Santo N, Filipescu M, Ossi PM, Dinescu M (2010) Nanostructure evolution in cluster-assembled WOx films synthesized by radio-frequency assisted laser ablation. Appl Phys A 101:325–331

    Article  CAS  Google Scholar 

  18. Sun Q, Rao BK, Jena P, Stolcic D, Kim YD, Gantefor G, Castleman AW Jr (2004) Appearance of bulk properties in small tungsten oxide clusters. J Chem Phys 121:9417–9422

    Article  CAS  PubMed  Google Scholar 

  19. Li S, Dixon DA (2006) Molecular and electronic structures, Brönsted basicities, and Lewis acidities of group VIB transition metal oxide clusters. J Phys Chem A 110:6231–6244

    Article  CAS  PubMed  Google Scholar 

  20. Rothgeb DW, Hossain E, Kuo AT, Troyer JL, Jarrold CC (2009) Structures of MoxW(3-x)O6 (x=0–3) anion and neutral clusters determined by anion photoelectron spectroscopy and density functional theory calculations, J Chem Phys 131:044310 (14 pages)

  21. Wang F, Valentin CD, Pacchioni G (2012) Do** of WO3 for photocatalytic water splitting: hints from density functional theory. J Phys Chem C 116:8901–8909

    Article  CAS  Google Scholar 

  22. Xu L, Yin M-L, Liu (Frank) S (2014) Agx@WO3 core-shell nanostructure for LSP enhanced chemical sensors, Sci Rep-UK 4:6745 (7 pages)

  23. Delley B (1990) An all-electron numerical method for solving the local density functional for polyatomic molecules. J Chem Phys 92:508–517

    Article  CAS  Google Scholar 

  24. Delley B (2000) From molecules to solids with the DMol3 approach. J Chem Phys 113:7756–7764

    Article  CAS  Google Scholar 

  25. Li W, Da P, Zhang Y, Wang Y, Lin X, Gong X, Zheng G (2014) WO3 nanoflakes for enhanced photoelectrochemical conversion. ACS Nano 8:11770–11777

    Article  CAS  PubMed  Google Scholar 

  26. Zhao Z, Li Z, Xue G, Shen X, Wu J (2021) First-principles calculations on the structures and electronic properties of the TMn@Si24H24O36 (TM=Cu, Ag and Au, n=1–8) clusters. Mater Chem Phys 262:124272 (5 pages)

  27. van Wüllen C (1999) Relativistic all-electron density functional calculations. J Comput Chem 20:51–62

    Article  Google Scholar 

  28. Mulliken RS (1955) Electron population analysis on LCAO-MO molecular wave functions. II. Overlap populations, bond orders, and covalent bond energies. J Chem Phys 23:1841–1846

    CAS  Google Scholar 

  29. Cora F, Patel A, Harrison NM, Dovesi R, Catlow CRA (1996) An ab initio Hartree-Fock study of the cubic and tetragonal phases of bulk tungsten trioxide. J Am Chem Soc 118:12174–12182

    Article  CAS  Google Scholar 

  30. Huang X, Zhai H-J, Li J, Wang L-S (2006) On the structure and chemical bonding of tri-tungsten oxide clusters W3On- and W3On (n=7-10): W3O8 as a potential molecular model for O-deficient defect sites in tungsten oxides. J Phys Chem A 110:85–92

    Article  CAS  PubMed  Google Scholar 

  31. Li Z, Shen X, Zhao Z (2022) Structures, electronic and magnetic properties of the FemOn@Cx (m=1-3, n=1-4, x=50, 60) clusters. Res Chem Intermediat 48:339–349

    Article  CAS  Google Scholar 

  32. Li Z, Zhao Z, Shao T-T (2020) Structures, electronic and magnetic properties of transition metal atoms encapsulated in Si12C12 cage. Mod Phys Lett B 34:2050320 (10 pages)

  33. Matxain JM, Eriksson LA, Formoso E, Piris M, Ugalde JM (2007) Endohedral (X@ZniSi)i=4-160,± nanoclusters, X = Li. Na, K, Cl, Br. J Phys Chem C 111:3560–3565

    Article  CAS  Google Scholar 

  34. Zhai H-J, Kiran B, Cui L-F, Li X, Dixon DA, Wang L-S (2004) Electronic structure and chemical bonding in MOn- and MOn Clusters (M=Mo, W; n=3-5): a photoelectron spectroscopy and ab initio study. J Am Chem Soc 126:16134–16141

    Article  CAS  PubMed  Google Scholar 

  35. Zhao L, Qu X, Wang Y, Lv J, Zhang L, Hu Z, Gu G, Ma Y (2017) Effects of manganese do** on the structure evolution of small-sized boron clusters. J Phys: Condens Matter 29:265401 (7 pages)

  36. Zheng H, Ou JZ, Strano MS, Kaner RB, Mitchell A, Kalantar-zadeh K (2011) Nanostructured tungsten oxide-properties, synthesis, and applications. Adv Funct Mater 21:2175–2196

    Article  CAS  Google Scholar 

  37. Valentin CD, Wang F, Pacchioni G (2013) Tungsten oxide in catalysis and photocatalysis: hints from DFT. Top Catal 56:1404–1419

    Article  Google Scholar 

  38. Ingham B, Hendy SC, Chong SV, Tallon JL (2005) Density-functional studies of tungsten trioxide, tungsten bronzes, and related systems. Phys Rev B 72:075109 (9 pages)

  39. Yakovkin IN, Gutowski M (2007) Driving force for the WO3(0 0 1) surface relaxation. Surf Sci 601:1481–1488

    Article  CAS  Google Scholar 

  40. Guo S-D (2013) Density-functional theory investigation of electronic structure, elastic properties, optical properties, and lattice dynamics of Ba2ZnWO6. Chin Phys B 22:067102 (5 pages)

  41. ** Y, Rocca D, Galli G (2013) Optical properties of tungsten trioxide from first-principles calculations. Phys Rev B 87:165203 (8 pages)

  42. Fu H, Pan C, Zhang L, Zhu Y (2007) Synthesis, characterization and photocatalytic properties of nanosized Bi2WO6, PbWO4 and ZnWO4 catalysts. Mater Res Bull 42:696–706

    Article  CAS  Google Scholar 

  43. Wang J, Ma L, Zhao J, Wang B, Wang G (2008) Stability and magnetic properties of transition metal atoms endohedral BnNn (n=12–28) cages. J Chem Phys 128:084306 (7 pages)

  44. Li Y, Cai C, Zhao C, Gu Y (2018) Structure determination of (Fe3O4)n+ (n=1–3) clusters via DFT, Mod Phys Lett B 30:1650239 (8 pages)

  45. Lu P, Wu C, Li Y, Yu Z, Cao H, Wang S (2013) Investigation on structural, electronic, and magnetic properties of Mn-doped Ga12N12 clusters. J Mater Sci 48:8552–8558

    Article  CAS  Google Scholar 

  46. Wildberger K, Stepanyuk VS, Lang P, Zeller R, Dederichs PH (2018) Magnetic Nanostructures: 4d clusters on Ag(001). Phys Rev Lett 75:509–512

    Article  Google Scholar 

Download references

Funding

This work was supported by the National Natural Science Foundation of China (No. 51634004).

Author information

Authors and Affiliations

Authors

Contributions

Zhen Zhao and Zi-hao Wu wrote the main manuscript text and Zhi Li prepared the figures. All authors reviewed the manuscript.

Corresponding author

Correspondence to Zhen Zhao.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOC 117 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, Z., Wu, Zh. & Li, Z. Structures, electronic and magnetic properties of transition metal inserted W6O18 clusters. Struct Chem 34, 1395–1403 (2023). https://doi.org/10.1007/s11224-022-02106-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-022-02106-8

Keywords

Navigation