Log in

A quantum chemical study of the interactions of uracil as a constituent of ribonucleic acid (RNA) with thiazolidinedione and rhodanine bioactive molecules: an insight into energetic and structural features

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this study, the biologically active configurations composed of Thiazolidinedione–Uracil (TU) and Rhodanine–Uracil (RU) have been fully investigated from the energetic and structural points of view, employing B3LYP and M062X functionals in combination with the different basis sets. Dispersion corrections to the interaction energy using M062X–GD3 and double hybrid density functionals (B2PLYP–GD2, B2PLYP–GD3 and mPW2PLYP–GD2) are also taking into account. The basis set superposition error-corrected interaction energy for hydrogen bonded configurations ranges from − 5.27 to − 13.53 and − 5.25 to − 12.93 kcal/mol for TU and RU complexes respectively as calculated at M062X/6–311++G(df,pd) level. The charge transfer process within all of the TU and RU configurations were analyzed using Natural Bond Orbital (NBO) calculations. The nature of the interactions is analyzed with NBO and Atoms in Molecules (AIM) analysis at M062X/6–311++G(df,pd) and energy decomposition analysis at BP86–D3/TZ2P(ZORA)//M062X/6–311++G(df,pd) level of theory. The results confirm that the nature of the interactions is nearly electrostatic, with a contribution of about 51–56% of the total interaction energy. The orbital interactions (ΔEorb) for the considered TU and RU complexes have a contribution of about 24–38% of the total interaction energy. Based on the AIM and NBO results, the interactions were defined as electrostatic H-bonds with partially covalent character. In addition, correlation between interaction energies and vibrational frequency changes was investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Müller–dethlefs K, Hobza P (2000) Noncovalent interactions: a challenge for experiment and theory. Chem Rev 100:143–168

    Article  Google Scholar 

  2. Rudkevich DM (2004) Emerging supramolecular chemistry of gases. Angew Chem Int Ed 43:558–571

    Article  CAS  Google Scholar 

  3. Saalfrank RW, Maid H, Scheurer A (2008) Supramolecular coordination chemistry: the synergistic effect of serendipity and rational design. Angew Chem Int Ed 47:8794–8824

    Article  CAS  Google Scholar 

  4. Chalasinski G, Szczesniak MM (2000) State of the art and challenges of the ab initio theory of intermolecular interactions. Chem Rev 100:4227–4252

    Article  CAS  Google Scholar 

  5. Scheiner S (2015) Non-covalent forces. Springer, Germany

    Google Scholar 

  6. Zhao Q (2017) Theoretical study of noncovalent interactions in XCN··· YO2H (X= F, Cl, Br, I; Y= P, As, Sb) complexes. J Mol Model 23:188

    Article  Google Scholar 

  7. Scheiner S (1997) Hydrogen bonding: a theoretical perspective. Oxford University Press, New York

    Google Scholar 

  8. Behzadi H, Esrafili MD, Hadipour NL (2007) A theoretical study of 17 O, 14 N and 2 H nuclear quadrupole coupling tensors in the real crystalline structure of acetaminophen. Chem Phys 333:97–104

    Article  CAS  Google Scholar 

  9. Esrafili MD, Behzadi H, Beheshtian J, Hadipour NL (2008) Theoretical 14 N nuclear quadrupole resonance parameters for sulfa drugs: sulfamerazine and sulfathiazole. J Mol Graph Model 27:326–331

    Article  CAS  Google Scholar 

  10. Dkhissi A, Blossev R (2007) Performance of DFT/MPWB1K for stacking and H-bonding interactions. Chem Phys Lett 439:35–39

    Article  CAS  Google Scholar 

  11. Anslyn E (2004) Modern physical organic chemistry. University Science, Sausalito

    Google Scholar 

  12. Jain A, Wang G, Vasquez KM (2008) DNA triple helices: biological consequences and therapeutic potential. Biochimie 90:1117–1130

    Article  CAS  Google Scholar 

  13. Emsley J (1980) Very Strong Hydrogen Bonds. Chem Soc Rev 9:91–124

    Article  CAS  Google Scholar 

  14. Hunter KC, Wetmore SD (2006) Hydrogen-bonding between cytosine and water: computational evidence for a ring-opened complex. Chem Phys Lett 422:500–506

    Article  CAS  Google Scholar 

  15. Wieczorek R, Dannenberg JJ (2003) Hydrogen-bond cooperativity, vibrational coupling, and dependence of helix stability on changes in amino acid sequence in small 310-helical peptides. A Density Functional Theory Study. J Am Chem Soc 125:14065–14071

    Article  CAS  Google Scholar 

  16. Solimannejad M, Rezaei Z, Esrafili MD (2013) Competition and interplay between the lithium bonding and hydrogen bonding: R3C···HY···LiY and R3C···LiY···HY triads as a working model (R=H, CH3; Y=CN, NC). J Mol Model 19:5031–5035

    Article  CAS  Google Scholar 

  17. Vojta D, Vazdar M (2014) The study of hydrogen bonding and π⋯π interactions in phenol⋯ethynylbenzene complex by IR spectroscopy. Spectrochim Acta A Mol Biomol Spectrosc 132:6–14

    Article  CAS  Google Scholar 

  18. Esrafili MD, Amiri Z, Shankal F (2016) Strong cooperative effects between π-hole and dihydrogen bonds interactions: a computational study. Mol Phys 114:2315–2324

    Article  CAS  Google Scholar 

  19. Afzali R, Vakili M, Nekoei AR, Tayyari SF (2014) Intramolecular hydrogen bonding and vibrational assignment of 1,1,1-trifluoro-5,5-dimethyl-2,4-hexanedione. J Mol Struct 1076:262–271

    Article  CAS  Google Scholar 

  20. Esrafili MD, Behzadi H (2012) A theoretical study on H-bonding interactions in maleic acid: calculated 17O, 1H NMR parameters and QTAIM analysis. Mol Simul 38:896–905

    Article  CAS  Google Scholar 

  21. Zheng YZ, He HY, Zhou Y, ZW Y (2014) Hydrogen-bonding interactions between [BMIM][BF4] and dimethyl sulfoxide. J Mol Struct 1069:140–146

    Article  CAS  Google Scholar 

  22. Vojta D, Matanović I, Kovačević G, Baranović G (2014). Spectrochim Acta A Mol Biomol Spectrosc 132:215–224

    Article  CAS  Google Scholar 

  23. Esrafili MD, Vakili M (2017) The effect of hydrogen-bonding cooperativity on the strength and properties of σ-hole interactions: an ab initio study. Mol Phys 115:913–924

    Article  CAS  Google Scholar 

  24. Rezaei Z, Solimannejad M, Esrafili MD (2015) Interplay between hydrogen bond and single-electron tetrel bond: H3C⋯COX2⋯HY and H3C⋯CSX2⋯HY (X = F, Cl; Y = CN, NC) complexes as a working model. Comput Theor Chem 1074:101–106

    Article  CAS  Google Scholar 

  25. Garrett RH, Grisham CM (1997) Principals of biochemistry with a human focus. Brooks/Cole Thomson Learning, United States

    Google Scholar 

  26. Brown DJ (1994) Heterocyclic compounds: thy pyrimidinesboner, vol 52. Interscience, New York

    Book  Google Scholar 

  27. Brown EG (1998) Ring nitrogen and key biomolecules: the biochemistry of N-heterocycles. Kluwer Academic Publishers, Boston

    Book  Google Scholar 

  28. Hidalgo A, Pompei C, Galli A, Cazzola S (2005) Uracil as an index of lactic acid bacteria contamination of tomato products. J Agric Food Chem 53:349–355

    Article  CAS  Google Scholar 

  29. Pozharskii AF, Soldatenkov AT, Katritzky AR (1997) Heterocycles in life and society: an introduction to heterocyclic chemistry and biochemistry and the role of heterocycles in science, technology, medicine, and agriculture. John Wiley and Sons, New York

    Google Scholar 

  30. Swath N, Ramu Y, Subrahmanyam CVS, Satyanarayana K (2012) Synthesis, quantum mechanical calculation and biological evaluation of 5-(4-substituted aryl/hetero aryl methylidene)-1, 3-thiazolidine-2, 4-diones. Int. J Pharm Sci 4:632–637

    Google Scholar 

  31. Sharmaa P, Reddyb TS, Thummuric D, Senwara KR, Kumara NP, Naiduc VGM, Bhargavab KS, Shankaraiah N (2016) Synthesis and biological evaluation of new benzimidazole-thiazolidinedione hybrids as potential cytotoxic and apoptosis inducing agents. Eur J Med Chem 124:608–621

    Article  Google Scholar 

  32. Jain VS, Vora DK, Ramaa CS (2013) Thiazolidine-2,4-diones: progress towards multifarious applications. Bioorg Med Chem 21:1599–1620

    Article  CAS  Google Scholar 

  33. Iqbal AKM, Khan AY, Kalashetti MB, Belavagi NS, Gong YD, Khazi IAM (2012) Synthesis, hypoglycemic and hypolipidemic activities of novel thiazolidinedione derivatives containing thiazole/triazole/oxadiazole ring. Eur J Med Chem 53:308–315

    Article  Google Scholar 

  34. Verma SK, Thareja S (2016) Molecular docking assisted 3D-QSAR study of benzylidene-2,4-thiazolidinedione derivatives as PTP-1B inhibitors for the management of type-2 diabetes mellitus. RSC Adv 6:33857–33867

    Article  CAS  Google Scholar 

  35. Liu XF, Zheng CJ, Sun LP, Liu XK, Piao HR (2011) Synthesis of new chalcone derivatives bearing 2,4-thiazolidinedione and benzoic acid moieties as potential anti-bacterial agents. Eur J Med Chem 46:3469–3473

    Article  CAS  Google Scholar 

  36. Romagnoli R, Baraldi PG, Salvador MK, Camacho ME, Balzarini J, Bermejo J, Estévez F (2013) Anticancer activity of novel hybrid molecules containing 5-benzylidene thiazolidine-2,4-dione. Eur J Med Chem 63:544–557

    Article  CAS  Google Scholar 

  37. Arafa WAA, Fareed MF, Rabeh SA, Shaker RM (2016) Ultrasound mediated green synthesis of rhodanine derivatives: synthesis, chemical behavior, and antibacterial activity. Phosphorus Sulfur Silicon Relat Elem 191:1129–1136

    Article  CAS  Google Scholar 

  38. Ali Muhammad S, Ravi S, Thangamani A (2016) Synthesis and evaluation of some novel N-substituted rhodanines for their anticancer activity. Med Chem Res 25:994–1004

    Article  CAS  Google Scholar 

  39. Brown FC, Bradsher CK (1951) Mildew-preventing activity of rhodanine derivatives. Nature 168:171–172

    Article  CAS  Google Scholar 

  40. Prashantha Kumar BR, Baig NR, Sudhir S, Kara K, Karana M, Pankaj M, Joghee NM (2012) Discovery of novel glitazones incorporated with phenylalanine and tyrosine: synthesis, antidiabetic activity and structure–activity relationships. Bioorg Med Chem 45:12–28

    Article  CAS  Google Scholar 

  41. Jacobine AM, Posner GH (2011) Three-component, one-flask synthesis of rhodanines (thiazolidinones). J Org Chem 76:8121–8125

    Article  CAS  Google Scholar 

  42. Kamila S, Ankati H, Harry E, Edward RB (2012) A facile synthesis of novel 3-(aryl/alkyl-2-ylmethyl)-2-thioxothiazolidin-4-ones using microwave heating. Tetrahedron Lett 53:2195–2198

    Article  CAS  Google Scholar 

  43. Khalili B (2016) A quantum chemical insight to intermolecular hydrogen bonding interaction between cytosine and nitrosamine: structural and energetic investigations. J Mol Struct 1107:162–173

    Article  CAS  Google Scholar 

  44. Khalili B, Rimaz M, Tondro T (2015) DFT study on foscarnet as an antiviral drug: conformer analysis, gas phase acidity, metal ion affinity and influence of metal complexation on gas phase acidity. J Mol Struct 1080:80–87

    Article  CAS  Google Scholar 

  45. Khalili B, Rimaz M (2017) An investigation on the physicochemical properties of the nanostructured [(4-X)PMAT][N(CN)2] ion pairs as energetic and tunable aryl alkyl amino tetrazolium based ionic liquids. J Mol Struct 1137:530–542

    Article  CAS  Google Scholar 

  46. Khalili B, Rimaz M (2017) Does interaction between an amino acid anion and methylimidazolium cation lead to a nanostructured ion pairs of [Mim][AA] as an ionic liquid? J Mol Liq 229:267–277

    Article  CAS  Google Scholar 

  47. Khalili B, Rimaz M (2017) Interplay between non-covalent pnicogen bonds and halogen bonds interactions in ArH2N---PH2FO---BrF nanostructured complexes: a substituent effects investigation. Struct Chem 28:1065–1079

    Article  CAS  Google Scholar 

  48. Khalili B (2016) An insight into the interaction of L-proline with the transition metal cations Fe2+, Co2+, Ni2+: a gas phase theoretical study. J Mol Model 22:11

    Article  Google Scholar 

  49. Khalili B, Rimaz M (2016) Interaction of l-proline with group IIB (Zn2+, Cd2+, Hg2+) metal cations in the gas and aqueous phases: a quantum computational study. Can J Chem 94:501–508

    Article  Google Scholar 

  50. Reed AE, Curtiss LA, Weinhold F (1988) Intermolecular interactions from a natural bond orbital, donor-acceptor viewpoint. Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  51. Bader RFW (1990) Atoms in molecules: a quantum theory. Clarendon Press, Oxford

    Google Scholar 

  52. Bader RFW, Essen HJ (1994) The characterization of atomic interactions. J Chem Phys 80:1943–1960

    Article  Google Scholar 

  53. Bader RFW (1998) 1997 Polanyi Award Lecture: why are there atoms in chemistry? Can J Chem 76:973–988

    Article  CAS  Google Scholar 

  54. Szczesniak MM, Latajka Z, Scheiner SJ (1986) The contribution of dispersion to H-bonds between hydrides of first and second-row atoms. J Mol Struct (THEOCHEM) 135:179–188

    Article  Google Scholar 

  55. Grimme S (2006) Semiempirical hybrid density functional with perturbative second-order correlation. J Chem Phys 124:034108

    Article  Google Scholar 

  56. Schwabe T, Grimme S (2006) Towards chemical accuracy for the thermodynamics of large molecules: new hybrid density functionals including non-local correlation effects. Phys Chem Chem Phys 8:4398–4401

    Article  CAS  Google Scholar 

  57. Schwabe T, Grimme S (2007) Double-hybrid density functionals with long-range dispersion corrections: higher accuracy and extended applicability. Phys Chem Chem Phys 9:3397–3406

    Article  CAS  Google Scholar 

  58. Pakhira S, Debnath T, Sen K, Das AK (2016) Interactions between metal cations with H2 in the M+- H2 complexes: performance of DFT and DFT-D methods. J Chem Sci 128:621–631

    Article  CAS  Google Scholar 

  59. Granovsky AA PC GAMESS (Version 7.1. http://classic.chem.msu.su/gran/ gamess/index.html)

  60. Biegler-Konig F (2000) AIM2000 (University of Applied Sciences, Bielefeld)

  61. Glendening DE, Reed AE, Carpenter JE, Weinhold F NBO, Version 3.1

  62. Hobza P, Havlas Z (2000) Blue-shifting hydrogen bonds. Chem Rev 100:4253–4264

    Article  CAS  Google Scholar 

  63. Shakourian–Fard M, Fattahi A, Bayat A (2012) Ionic liquid based on α-amino acid anion and N7,N9-dimethylguaninium cation ([dMG][AA]): theoretical study on the structure and electronic properties. J Phys Chem A 116:5436–5444

    Article  Google Scholar 

  64. Popelier PLA (1998) Characterization of a dihydrogen bond on the basis of the electron density. J Phys Chem A 102:1873–1878

    Article  CAS  Google Scholar 

Download references

Acknowledgments

Support of this work from the Research Council of the University of Guilan is gratefully appreciated. We also thank Professor Rolf H. Prager for proof reading this article.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Behzad Khalili.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khalili, B., Rimaz, M. A quantum chemical study of the interactions of uracil as a constituent of ribonucleic acid (RNA) with thiazolidinedione and rhodanine bioactive molecules: an insight into energetic and structural features. Struct Chem 29, 681–702 (2018). https://doi.org/10.1007/s11224-017-1062-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1062-4

Keywords

Navigation