Log in

The hydrogen-bonded complexes of the 5-fluorouracil with the DNA purine bases: a comprehensive quantum chemical study

  • Original Research
  • Published:
Structural Chemistry Aims and scope Submit manuscript

Abstract

In this research work, various hydrogen-bonded complexes of 5-fluorouracil (FU), as a simplest organic anticancer drug, with the adenine and guanine purine bases were investigated. First, the molecular electrostatic potentials (MEP) of all monomers (FU, A, and G) are explored and their active sites for hydrogen-bonded interactions identified. Then, the selected plausible coplanar complexes were optimized and their complexation energies obtained. Our results reveal that the FU-G complexes are more stable than the FU-A ones. Also, the most stable structures of both series were recognized, which is consistent with the MEP results of monomers. Additionally, we estimated the strengths of the individual hydrogen bonds of the benchmark systems by energetic, geometric, spectroscopic, topological, and molecular orbital descriptors. The acceptable linear correlations between the complexation energies and some of the mentioned descriptors are observed. Finally, several aromatic indices (HOMA, ATI, NICS (0), and NICS (1)) were applied to evaluate the significant of π-electron delocalization (π-ED) of 5/6 membered rings. These results show that the π-ED of the benchmark systems increases with the formation or strengthening of the HB, which is in line with the resonance-assisted hydrogen bond theory.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Stringer JL (2005) Basic concepts in pharmacology. McGraw-Hill Companies

  2. Nishimura T, Okobira T, Kelly AM, Shimada N, Takeda Y, Sakurai K (2007) DNA binding of tilorone:1H NMR and calorimetric studies of the intercalation J Biochem 46:8156–8163

    Article  CAS  Google Scholar 

  3. Aventine C, Menendes JC (2015) Medicinal chemistry of anticancer drugs. Elsevier, Amsterdam,

    Google Scholar 

  4. Braga SF, Melo LC, Barone PMVB (2004) Semiempirical study on the electronic structure of antitumor drugs ellipticines, olivacines and isoellipticines J Mol Struct THEOCHEM 710:51–59

    Article  CAS  Google Scholar 

  5. Pang D, Abruna HD (1998) Micromethod for the investigation of the interactions between DNA and redox-active molecules J Anal Chem 70:3162–3169

    Article  CAS  Google Scholar 

  6. Fritzsche H, Akhebat A, Taillandier E, Rippe K, Jovin TM (1993) Structure and drug interaction of parellel-stranded DNA studies by infrared spectroscope and fluorence Nucleic Acids Res 21:5085–5091

    Article  CAS  Google Scholar 

  7. Gane PJ, Dean PM (2000) Recent advances in structure-based rational drug design J Curr Opin Struct Biol 10:401–404

    Article  CAS  Google Scholar 

  8. Graves DE, Velea LM (2000) Intercalative binding of small molecules to nucleic acids J Curr Org Chem 4:915–929

    Article  CAS  Google Scholar 

  9. Li VS, Choi D, Wang Z, Jimenez LS, Tang MS, Kohn H (1996) Role of the C-10 substituent in mitomycin C-1− DNA bonding J Chem Soc 118:2326–2331

    Article  CAS  Google Scholar 

  10. Tomasz M, Lipman R, Chowdary D, Pawlak J, Verdine GL, Nakanishi K (1987) Isolation and structure of a covalent cross-link adduct between mitomycin C and DNA Science 235:1204–1208

    Article  CAS  Google Scholar 

  11. Hecht SM (2000) Bleomycin: new perspectives on the mechanism of action 1 J Nat Prod 63:158–168

    Article  CAS  Google Scholar 

  12. Zuber G, Quada JC, Hecht SM (1998) Sequence selective cleavage of a DNA octanucleotide by chlorinated bithiazoles and bleomycins. J Am Chem Soc120:9368–9369

  13. Heidelberger C, Chaudhuri NK, Danneburg P, et al. (1957) Fluorinated pyrimidines, a new class of tumour-inhibitory compounds Nature 179:663–666

    Article  CAS  Google Scholar 

  14. Heidelberger C, Ausfield FJ (1963) Experimental and clinical use of fluorinated pyrimidines in cancer chemotherapy Cancer Res 23:1226–1243

    CAS  Google Scholar 

  15. Wanga W, Collie-Duguida E, Cassidy J (2002) FEBS Letter 531:415–420

  16. Longley DB, Harkin DP, Johnston PG (2003) 5-fluorouracil: mechanisms of action and clinical strategies Nat Rev Cancer 3:330–338

    Article  CAS  Google Scholar 

  17. Carethers JM, Smith EJ, Behling CA, Nguyen L, Tajima A, Doctolero RT, Cabrera BL, Tajima A, Doctolero RT, Cabrera BL, Goel A, Arnold CA, Miyai K, Boland CR (2004) Use of 5-fluorouracil and survival in patients with microsatellite-unstable colorectal cancer Gastroenterology 126:394–401

    Article  CAS  Google Scholar 

  18. Reni M, Cereda S, Galli L (2007) PEFG (cisplatin, epirubicin, 5-fluorouracil, gemcitabine) for patients with advanced pancreatic cancer: the ghost regimen Cancer Lett 256:25–28

    Article  CAS  Google Scholar 

  19. Mirzaei M (2013) Effects of carbon nanotubes on properties of the fluorouracil anticancer drug: DFT studies of a CNT-fluorouracil compound Int J Nano Dimens 3:175–179

    CAS  Google Scholar 

  20. Soltani A, Baei MT, Tazikeh Lemeski E, Kaveh AS, Balakheyli H (2015) A DFT study of 5-fluorouracil adsorption on the pure and doped BN nanotubes J Phys Chem Solids 86:57–64

    Article  CAS  Google Scholar 

  21. Hazrati MK, Hadipour NL (2016) Adsorption behavior of 5-fluorouracil on pristine, B-, Si-, and Al-doped C60 fullerenes: a first-principles study Phys Lett A 380:937–941

    Article  CAS  Google Scholar 

  22. Johnston PG et al. (1995) Thymidylate synthase gene and protein expression correlate and are associated with response to 5-fluorouracil in human colorectal and gastric tumors Cancer Res 55:1407–1412

    CAS  Google Scholar 

  23. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery JA, Vreven Jr T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick DK, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox DJ, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill PMW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA (2003) Gaussian 03 revision C 02 (or D 01). Gaussian Inc, Pittsburgh,

    Google Scholar 

  24. Biegler KF, Schonbohm J, Bayles D (2001) AIM2000: a program to analyze and visualize atoms in molecules J Comput Chem 22:545–559

    Article  Google Scholar 

  25. Glendening ED, Reed AE, Carpenter JE, Weinhold F (1992) NBO, Version 3.1 University of Wisconsin, Madison

  26. Hameka HF (1958) On the nuclear magnetic shielding in the hydrogen molecule J Mol Phys 1:203–215

    Article  CAS  Google Scholar 

  27. Lu T, Chen F (2012) Multiwfn: a multifunctional wave function analyzer J Comput Chem 33:580–592

    Article  Google Scholar 

  28. Krygowski TM, Cyranski MK (1996) Separation of the energetic and geometric contributions to the aromaticity of π-electron carbocyclics Tetrahedron 52:1713–1722

    Article  CAS  Google Scholar 

  29. Schleyer PR, Maerker C, Dransfeld A, Jiao H, Hommes NJR (1996) Nucleus-independent chemical shifts: a simple and efficient aromaticity probe J Am Chem Soc 118:6317–6318

    Article  CAS  Google Scholar 

  30. Bultinck P, Ponec R, Van Damme S (2005) Multicenter bond indices as a new measure of aromaticity in polycyclic aromatic hydrocarbons J Phys Org Chem 18:706–718

    Article  CAS  Google Scholar 

  31. Sukhodub LF – Biofizika (1987) Interactions between nucleotide bases in coplanar and stacking dimers under vacuum. Mass spectrometric study. Eur PMC Plus 32(6): 994–1005

  32. Scrocco E, Tomasi J (1979) Electronic molecular structure, reactivity and intermolecular forces: an euristic interpretation by means of electrostatic molecular potentials Adv Quantum Chem 11:115–121

    Article  Google Scholar 

  33. Okulik N, Junert AH (2005) Theoretical analysis of the reactive sites of non-steroidal anti-inflammatory drugs Internet Electron J Mol Des 4:17–30

    CAS  Google Scholar 

  34. Politzer P, Murray J (2002) The fundamental nature and role of the electrostatic potential in atoms and molecules J Theor Chem Acc 108:134–142

    Article  CAS  Google Scholar 

  35. Espinosa E, Molins E (2000) Retrieving interaction potentials from the topology of the electron density distribution: the case of hydrogen bonds J Chem Phys 113:5686–5694

    Article  CAS  Google Scholar 

  36. Jesus AJL, Redinha JS (2011) Charge-assisted intramolecular hydrogen bonds in disubstituted cyclohexane derivatives J Phys Chem A 115:14069–14077

    Article  CAS  Google Scholar 

  37. Shainyan BA, Chipanina NN, Aksamentova TN, Oznobikhina LP, Rosentsevig GN, Rosentsevig IB (2010) Intramolecular hydrogen bonds in the sulfonamide derivatives of oxamide, dithiooxamide, and biuret. FT-IR and DFT study, AIM and NBO analysis Tetrahedron 66:8551–8556

    Article  CAS  Google Scholar 

  38. Krygowski TM, Stepion BT (2005) Sigma- and pi-electron delocalization: focus on substituent effects Chem Rev 105:3482–3512

    Article  CAS  Google Scholar 

  39. Krygowski TM, Cyranski MK (2001) Structural aspects of aromaticity Chem Rev 101:1385–1420

    Article  CAS  Google Scholar 

  40. Poater J, Duran M, Sola M, Silvi B (2005) Theoretical evaluation of electron delocalization in aromatic molecules by means of atoms in molecules (AIM) and electron localization function (ELF) topological approaches Chem Rev 105:3911–3947

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors confirm that there is no significant financial support for this work that could have influenced its outcome.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Nowroozi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nakhaei, E., Nowroozi, A. & Ravari, F. The hydrogen-bonded complexes of the 5-fluorouracil with the DNA purine bases: a comprehensive quantum chemical study. Struct Chem 29, 69–80 (2018). https://doi.org/10.1007/s11224-017-1001-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11224-017-1001-4

Keywords

Navigation