Log in

Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework

  • Published:
Research on Chemical Intermediates Aims and scope Submit manuscript

Abstract

A gallium-based metal–organic framework, post-modified with MoO2Cl2, was examined as a catalyst for the room temperature liquid-phase photooxidation of α‐ and β-pinene in the presence of molecular oxygen as the oxidant. For both substrates, (α, β)-pinene oxide was formed as the sole product due to the oxygen atom transfer process. Peroxo-molybdenum species was identified in the reoxidation process using infrared spectroscopy. Moreover, a comparison of the structure of the catalyst before and after catalysis by means of X-ray powder diffraction (XRPD), infrared spectroscopy (IR) and N2 adsorption–desorption measurements demonstrated the high recyclability and potential of this catalyst in the photocatalytic epoxidation process of terpenes.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Availability of data and material

The spectroscopic measurements made are kept in their original files. The quality and reproducibility of the catalytic experiments were verified by triplicate analysis of the experiments and the results reported in this article correspond to the average of these measurements. The synthesis procedure reported is truthful, and no details are omitted that allow the obtaining of these materials as they are reported in this article.

References

  1. C. Mangeon, F. Thevenieau, E. Renard, V. Langlois, ACS. Sustainable. Chem. Eng. 5, 6707 (2017)

    Article  CAS  Google Scholar 

  2. J.L.F. Monteiro, C.O. Veloso, Top. Catal. 27, 169 (2004)

    Article  CAS  Google Scholar 

  3. A.E. Harman‐Ware, in Chemical Catalysts for Biomass Upgrading (Wiley, 2020), pp. 529–568

  4. R. Denicourt-Nowicki, Ali and Roucoux. Catalysts 9, 893 (2019)

    Article  CAS  Google Scholar 

  5. N. Tsolakis, W. Bam, J.S. Srai, M. Kumar, J. Clean. Prod. 222, 802 (2019)

    Article  CAS  Google Scholar 

  6. M. Golets, S. Ajaikumar, J.P. Mikkola, Chem. Rev. 115, 3141 (2015)

    Article  CAS  PubMed  Google Scholar 

  7. A. Negoi, V.I. Parvulescu, M. Tudorache, Catal. Today 306, 199 (2018)

    Article  CAS  Google Scholar 

  8. R. Paduch, M. Trytek, S.K. Król, J. Kud, M. Frant, M. Kandefer-Szerszeń, J. Fiedurek, Pharm. Biol. 54, 1096 (2016)

    Article  CAS  PubMed  Google Scholar 

  9. V.V.F. and N.F.S.O.V. BAKHVALOV, Chemistry for Sustainable Development 6, 643 (2008)

  10. Y. Qin, B. Wang, J. Li, X. Wu, L. Chen, Transition Met. Chem. 44, 595 (2019)

    Article  CAS  Google Scholar 

  11. B.A. Allal, L. El Firdoussi, S. Allaoud, A. Karim, Y. Castanet, A. Mortreux, J. Mol. Catal. A: Chem. 200, 177 (2003)

    Article  CAS  Google Scholar 

  12. T. Punniyamurthy, S. Velusamy, J. Iqbal, Chem. Rev. 105, 2329 (2005)

    Article  CAS  PubMed  Google Scholar 

  13. A. Ali, W. Akram, H.Y. Liu, Molecules 24, 78 (2019)

    Article  CAS  Google Scholar 

  14. L.S. Mdletshe, P.R. Makgwane, S.S. Ray, Nanomaterials 9, 1140 (2019)

    Article  CAS  PubMed Central  Google Scholar 

  15. H. Arzoumanian, Coord. Chem. Rev. 178–180, 191 (1998)

    Article  Google Scholar 

  16. A. Dupé, M.E. Judmaier, F. Belaj, K. Zangger, N.C. Mösch-Zanetti, Dalton Trans. 44, 20514 (2015)

    Article  PubMed  Google Scholar 

  17. R. Hille, Trends Biochem. Sci. 27, 360 (2002)

    Article  CAS  PubMed  Google Scholar 

  18. R. Hille, Chem. Rev. 96, 2757 (1996)

    Article  CAS  PubMed  Google Scholar 

  19. R.H. Holm, P. Kennepohl, E.I. Solomon, Chem. Rev. 96, 2239 (1996)

    Article  CAS  PubMed  Google Scholar 

  20. J.H. Enemark, J.J.A. Cooney, J.J. Wang, R.H. Holm, Chem. Rev. 104, 1175 (2004)

    Article  CAS  PubMed  Google Scholar 

  21. K. Heinze, Coord. Chem. Rev. 300, 121 (2015)

    Article  CAS  Google Scholar 

  22. J.W. Kück, R.M. Reich, F.E. Kühn, Chem. Rec. 16, 349 (2016)

    Article  PubMed  CAS  Google Scholar 

  23. N.J. Castellanos, in Molybdenum and Its Compounds: Applications, Electrochemical Properties and Geological Implications (2014), p. 447

  24. S.M. Danov, O.A. Kazantsev, A.L. Esipovich, A.S. Belousov, A.E. Rogozhin, E.A. Kanakov, Catal. Sci. Technol. 7, 3659 (2017)

    Article  CAS  Google Scholar 

  25. C.A. Páez, N.J. Castellanos, F. Martínez O.F. Ziarelli, G. Agrifoglio, E.A. Páez-Mozo and H. Arzoumanian, Catalysis Today 133135, 619 (2008)

  26. H. Arzoumanian, N.J. Castellanos, F.O. Martínez, E.A. Páez-Mozo, F. Ziarelli, Eur. J. Inorg. Chem. 2010, 1633 (2010)

    Article  CAS  Google Scholar 

  27. C.A. Páez, O. Lozada, N.J. Castellanos, F.O. Martínez, F. Ziarelli, G. Agrifoglio, E.A. Páez-Mozo, H. Arzoumanian, J. Mol. Catal. A: Chem. 299, 53 (2009)

    Article  CAS  Google Scholar 

  28. N.J. Castellanos, F. Martínez, E.A. Páez-Mozo, F. Ziarelli, H. Arzoumanian, Transition Met. Chem. 37, 629 (2012)

    Article  CAS  Google Scholar 

  29. N.J. Castellanos, F. Martínez, F. Lynen, S. Biswas, P. Van Der Voort, H. Arzoumanian, Transition Met. Chem. 38, 119 (2013)

    Article  CAS  Google Scholar 

  30. H. Martínez, Á.A. Amaya, E.A. Páez-Mozo and F. Martínez O, Microporous Mesoporous. Mater. 265, 202 (2018)

  31. H. Martínez Q, E. A. Paez-Mozo and F. Martínez O, Topics in Catalysis 64, 36 (2021)

  32. H. Martinez Q, Á.A. Amaya, E.A. Paez-Mozo, F. Martinez O and S. Valange, Catalysis Today In press (2020)

  33. J. Liu, L. Chen, H. Cui, J. Zhang, L. Zhang, C.Y. Su, Chem. Soc. Rev. 43, 6011 (2014)

    Article  CAS  PubMed  Google Scholar 

  34. P. Kumar, K. Vellingiri, K.-H. Kim, R.J.C. Brown, M.J. Manos, Microporous Mesoporous Mater. 253, 251 (2017)

    Article  CAS  Google Scholar 

  35. K.K. Gangu, S. Maddila, S.B. Mukkamala, S.B. Jonnalagadda, Inorg. Chim. Acta 446, 61 (2016)

    Article  CAS  Google Scholar 

  36. K.-G. Liu, Z. Sharifzadeh, F. Rouhani, M. Ghorbanloo and A. Morsali, Coordination Chemistry Reviews 436, 213827 (2021)

  37. Z. Yang, Z. Guo, J. Zhang, Y. Hu, Res. Chem. Intermed. 47, 325 (2021)

    Article  CAS  Google Scholar 

  38. Y. Chen, X. Zhang, X. Wang, R.J. Drout, M.R. Mian, R. Cao, K. Ma, Q. **a, Z. Li, O.K. Farha, J. Am. Chem. Soc. 143, 4302 (2021)

    Article  CAS  PubMed  Google Scholar 

  39. L. Yu, W.-G. Cui, Q. Zhang, Z.-F. Li, Y. Shen, T.-L. Hu, Materials Advances 2, 1294 (2021)

    Article  CAS  Google Scholar 

  40. Y.Y. Liu, K. Leus, Z. Sun, X. Li, H. Depauw, A. Wang, J. Zhang and P. Van Der Voort, Microporous Mesoporous Mater. 245 (2019)

  41. C.A. Bravo-Sanabria, L.C. Solano-Delgado, R. Ospina-Ospina, F. Martínez-Ortega and G.E. Ramírez-Caballero, Microporous Mesoporous Mater. 305, 110359 (2020)

  42. K. Leus, Y.Y. Liu, M. Meledina, S. Turner, G. Van Tendeloo, P. Van Der Voort, J. Catal. 316, 201 (2014)

    Article  CAS  Google Scholar 

  43. S. (Seymour) Lowell and S. (Seymour) Lowell, Characterization of Porous Solids and Powders : Surface Area, Pore Size and Density (Kluwer Academic Publishers, 2004)

  44. M. Thommes, K.A. Cychosz, Adsorption 20, 233 (2014)

    Article  CAS  Google Scholar 

  45. M. Thommes, Chem. Int. 38, 25 (2016)

    Article  Google Scholar 

  46. W.E. Vargas, G.A. Niklasson, Appl. Opt. 36, 5580 (1997)

    Article  CAS  PubMed  Google Scholar 

  47. J.M. Essick, R.T. Mather, Am. J. Phys. 61, 646 (1993)

    Article  Google Scholar 

  48. Y.Y. Liu, K. Leus, T. Bogaerts, K. Hemelsoet, E. Bruneel, V. Van Speybroeck, P. Van Der Voort, ChemCatChem 5, 3657 (2013)

    Article  CAS  Google Scholar 

  49. Y.Y. Liu, R. Decadt, T. Bogaerts, K. Hemelsoet, A.M. Kaczmarek, D. Poelman, M. Waroquier, V. Van Speybroeck, R. Van Deun, P. Van Der Voort, J. Phys. Chem. C 117, 11302 (2013)

    Article  CAS  Google Scholar 

  50. C. McKinstry, R.J. Cathcart, E.J. Cussen, A.J. Fletcher, S.V. Patwardhan, J. Sefcik, Chem. Eng. J. 285, 718 (2016)

    Article  CAS  Google Scholar 

  51. H.S. Jena, K. Leus and P. Van Der Voort, in RSC Catalysis Series (Royal Society of Chemistry, 2019), pp. 132–162

  52. D.M. Carari, M.J. Da Silva, Catal. Lett. 144, 615 (2014)

    Article  CAS  Google Scholar 

  53. S. Rayati, N. Rafiee, A. Wojtczak, Inorg. Chim. Acta 386, 27 (2012)

    Article  CAS  Google Scholar 

  54. C.P. Gordon, R.A. Andersen and C. Copéret, Helvetica Chimica Acta 102, e1900151 (2019)

  55. A.K. Rappé, W.A. Goddard, Nature 285, 311 (1980)

    Article  Google Scholar 

  56. P. Basu, B.W. Kail, C.G. Young, Inorg. Chem. 49, 4895 (2010)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. A.K. Rappé, W.A. Goddard, J. Am. Chem. Soc. 102, 5114 (1980)

    Article  Google Scholar 

  58. A.K. Rappé, W.A. Goddard, J. Am. Chem. Soc. 104, 3287 (1982)

    Article  Google Scholar 

  59. A.H. Yahaya, M.A. Gondal, A. Hameed, Chem. Phys. Lett. 400, 206 (2004)

    Article  CAS  Google Scholar 

  60. M.A. Gondal, M.N. Sayeed, Z. Seddigi, J. Hazard. Mater. 155, 83 (2008)

    Article  CAS  PubMed  Google Scholar 

  61. T. Tapia-Tlatelpa, V. Buscio, J. Trull, V. Sala, Chem. Eng. Res. Des. 156, 456 (2020)

    Article  CAS  Google Scholar 

  62. J. Oliva, J. Sanchez, S.R. Servin, J.A. Ruiz-Santoyo, C.R. Garcia, M.A. Vallejo, L. Álvarez-Valtierra and C. Gomez-Solis, Mater Chem Phys. 252, 123198 (2020)

  63. G. Pirgholi-Givi, S. Farjami-Shayesteh and Y. Azizian-Kalandaragh, Physica B: Condensed Matter 578, 411886 (2020)

  64. G. Rangarajan, N. Yan, R. Farnood, Can. J. Chem. Eng. 98, 2259 (2020)

    Article  CAS  Google Scholar 

  65. S. Munir, D.D. Dionysiou, S.B. Khan, S.M. Shah, B. Adhikari, A. Shah, J. Photochem. Photobiol., B 148, 209 (2015)

    Article  CAS  Google Scholar 

  66. A. Visan, J.R. Van Ommen, M.T. Kreutzer, R.G.H. Lammertink, Ind. Eng. Chem. Res. 58, 5349 (2019)

    Article  CAS  Google Scholar 

  67. S. Zhu, D. Wang, Adv. Energy Mater. 7, 1700841 (2017)

    Article  CAS  Google Scholar 

  68. G.A. Leith, C.R. Martin, J.M. Mayers, P. Kittikhunnatham, R.W. Larsen and N.B. Shustova, Chem Soc Rev. (2021)

  69. H. Arzoumanian, R. Lopez, G. Agrifoglio, Inorg. Chem. 33, 3177 (1994)

    Article  CAS  Google Scholar 

  70. H. Arzoumanian, Current Inorganic Chemistrye 1, 140 (2012)

    Article  Google Scholar 

  71. R.A. Sheldon, J Mol Catal. 20, 1 (1983)

  72. I.W.C.E. Arends, R.A. Sheldon, Appl. Catal. A 212, 175 (2001)

    Article  CAS  Google Scholar 

  73. G. Lyashenko, G. Saischek, A. Pal, R. Herbst-Irmer and N.C. Mösch-Zanetti, Chem Commun. 701 (2007)

  74. N. Zwettler, M.A. Ehweiner, J.A. Schachner, A. Dupé, F. Belaj and N.C. Mösch-Zanetti, Mol. 24, (2019)

  75. N. Zwettler, M.E. Judmaier, L. Strohmeier, F. Belaj, N.C. Mösch-Zanetti, Dalton Trans. 45, 14549 (2016)

    Article  CAS  PubMed  Google Scholar 

  76. N. Zwettler, N. Grover, F. Belaj, K. Kirchner, N.C. Mösch-Zanetti, Inorg. Chem. 56, 10147 (2017)

    Article  CAS  PubMed  Google Scholar 

  77. H. Martínez, M.F. Cáceres, F. Martínez, E.A. Páez-Mozo, S. Valange, N.J. Castellanos, D. Molina, J. Barrault, H. Arzoumanian, J. Mol. Catal. A: Chem. 423, 248 (2016)

    Article  CAS  Google Scholar 

  78. V. Vrdoljak, B. Prugovečki, I. Pulić, M. Cigler, D. Sviben, J. Parlov Vuković, P. Novak, D. Matković-Čalogović and M. Cindrić, New J Chem 39, 7322 (2015)

  79. A.C. Ghosh, P.P. Samuel, C. Schulzke, Dalton Trans. 46, 7523 (2017)

    Article  CAS  PubMed  Google Scholar 

  80. F.E. Kühn, A.M. Santos, M. Abrantes, Chem. Rev. 106, 2455 (2006)

    Article  PubMed  CAS  Google Scholar 

  81. S.B. Khomane, D.S. Doke, M.K. Dongare, S.B. Halligudi, S.B. Umbarkar, Appl. Catal. A 531, 45 (2017)

    Article  CAS  Google Scholar 

  82. T. Amarante, F. Almeida Paz, S. Gago, I. Gonçalves, M. Pillinger, A. Rodrigues and M. Abrantes, Mol 14, 3610 (2009)

  83. A.V. Biradar, M.K. Dongare, S.B. Umbarkar, Tetrahedron Lett. 50, 2885 (2009)

    Article  CAS  Google Scholar 

  84. M.G. Chandgude, A.V. Biradar, T.V. Kotbagi, V.G. Puranik, M.K. Dongare, S.B. Umbarkar, Catal. Lett. 142, 1352 (2012)

    Article  CAS  Google Scholar 

  85. M. Selke, J.S. Valentine, J. Am. Chem. Soc. 120, 2652 (1998)

    Article  CAS  Google Scholar 

  86. D.V. Deubel, J. Sundermeyer, G. Frenking, J. Am. Chem. Soc. 122, 10101 (2000)

    Article  CAS  Google Scholar 

  87. S. Fukuzumi, Y.M. Lee, W. Nam, Dalton Trans. 48, 9469 (2019)

    Article  CAS  PubMed  Google Scholar 

  88. H. Noh, J. Cho, Coord. Chem. Rev. 382, 126 (2019)

    Article  CAS  Google Scholar 

  89. M. Niakan, Z. Asadi, M. Masteri-Farahani, Appl. Surf. Sci. 481, 394 (2019)

    Article  CAS  Google Scholar 

  90. M. Jafarpour, M. Ghahramaninezhad, A. Rezaeifard, RSC Adv. 4, 1601 (2014)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Universidad Nacional de Colombia and the Faculty of Sciences of Universidad Nacional de Colombia by the internal Project code 37526. FMO appreciates the financing of the BIORETO XXI-15:50 program (RC-FP44842-212-2018, MINCiencias).

Funding

This work was financially supported by the Universidad Nacional de Colombia and the Faculty of Sciences of Universidad Nacional de Colombia by the internal Project code 37526. FMO appreciates the financing of the BIORETO XXI-15:50 program (RC-FP44842-212–2018, MINCiencias).

Author information

Authors and Affiliations

Authors

Contributions

Nelson J. Castellanos contributed to conceptualization, experimental plan, formal analysis, funding acquisition, validation, writing—original draft. Henry Martínez contributed to data curation, formal analysis, methodology, visualization, writing—review and editing. Fernando Martínez O. contributed to formal analysis, investigation, supervision, validation, writing—review and editing. Karen Leus contributed to methodology, experimental plan, formal analysis, supervision, validation, writingreview and editing. Pascal Van Der Voort contributed to formal analysis, investigation, supervision, validation, writingreview and editing.

Corresponding author

Correspondence to Nelson J. Castellanos.

Ethics declarations

Conflicts of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1559 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos, N.J., Martínez Q, H., Martínez O, F. et al. Photo-epoxidation of (α, β)-pinene with molecular O2 catalyzed by a dioxo-molybdenum (VI)-based Metal–Organic Framework. Res Chem Intermed 47, 4227–4244 (2021). https://doi.org/10.1007/s11164-021-04518-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11164-021-04518-3

Keywords

Navigation