Log in

Selective Synthesis of Perillyl Alcohol from β-Pinene Epoxide over Ti and Mo Supported Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Isomerization of β-pinene epoxide to perillyl alcohol using several materials based on titanium and molybdenum is reported. The metals were incorporated on SBA-15, MCM-41 and SiO2 supports by incipient wetness impregnation and characterized by XRD, atomic absorption, BET, Raman spectroscopy, diffuse reflectance UV–Vis spectroscopy, TPD-NH3 and 29Si NMR. After metal incorporation, crystallinity and surface area of both MCM-41 and SBA-15 decreased. UV–Vis and Raman also revealed the presence of MoO3 species and no presence of TiO2. In addition, Ti materials showed less amount of acid sites than catalysts containing Mo. Synthesis of perillyl alcohol from β-pinene epoxide was affected by the content of acid sites; Mo/SBA-15 catalyst was more active than Mo/MCM-41 and Mo/SiO2 supported materials. Over Mo/SBA-15 a complete β-pinene epoxide conversion and perillyl alcohol selectivity of 63% were obtained at 1 h of reaction, results that are similar to the best activity reported up to now; Mo/SBA-15 can be recycled at least six times without any appreciable loss of conversion nor selectivity. Finally, a reaction pathway is proposed based on experimental information, explaining the exclusive formation of perillyl alcohol from β-pinene epoxide.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Spain)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Martínez-Vargas DX, Rivera De La Rosa J, Sandoval-Rangel L, Guzmán-Mar JL, Garza-Navarro MA, Lucio-Ortiz CJ, De Haro-Del Río DA (2017) 5-Hydroxymethylfurfural catalytic oxidation under mild conditions by Co (II), Fe (III) and Cu (II) Salen complexes supported on SBA-15: synthesis, characterization and activity. Appl Catal A Gen 547:132–145. https://doi.org/10.1016/j.apcata.2017.08.035

    Article  CAS  Google Scholar 

  2. Swift KAD (2004) Catalytic transformations of the major terpene feedstocks. Top Catal 27:143–155. https://doi.org/10.1023/B:TOCA.0000013549.60930.da

    Article  CAS  Google Scholar 

  3. Frey C (2005) Natural flavors and fragrances. History 908:3–19. https://doi.org/10.1021/bk-2005-0908

    Article  CAS  Google Scholar 

  4. Taylor JC (2018) Advances in chemistry research, vol 147. Nova Science Publishers, Hauppauge

  5. Sidorenko AY, Aho A, Ganbaatar J, Batsuren D, Utenkova DB, Sen’kov GM, Wärnå J, Murzin DY, Agabekov VE (2017) Catalytic isomerization of Α-pinene and 3-carene in the presence of modified layered aluminosilicates. Mol Catal 443:193–202. https://doi.org/10.1016/j.mcat.2017.10.014

    Article  CAS  Google Scholar 

  6. Golets M, Ajaikumar S, Mikkola JP (2015) Catalytic upgrading of extractives to chemicals: monoterpenes to “eXICALS.” Chem Rev 115:3141–3169. https://doi.org/10.1021/cr500407m

    Article  CAS  PubMed  Google Scholar 

  7. Corma A, Iborra S, Velty A (2007) Chemical routes for the transformation of biomass into chemicals. Chem Rev 107:2411–2502. https://doi.org/10.1021/cr050989d

    Article  CAS  PubMed  Google Scholar 

  8. Corma A, Renz M, Susarte M (2009) Transformation of biomass products into fine chemicals catalyzed by solid Lewis- and Brønsted-acids. Top Catal 52:1182–1189. https://doi.org/10.1007/s11244-009-9266-5

    Article  CAS  Google Scholar 

  9. De La Torre O, Renz M, Corma A (2010) Biomass to chemicals: rearrangement of β-pinene epoxide into myrtanal with well-defined single-site substituted molecular sieves as reusable solid Lewis-acid catalysts. Appl Catal A Gen 380:165–171. https://doi.org/10.1016/j.apcata.2010.03.056

    Article  CAS  Google Scholar 

  10. Mäki-Arvela P, Kumar N, Diáz SF, Aho A, Tenho M, Salonen J, Leino A-R, Kordás K, Laukkanen P, Dahl J, Sinev I, Salmi T, Murzin DY (2013) Isomerization of β-pinene oxide over Sn-modified zeolites. J Mol Catal A Chem 366:228–237. https://doi.org/10.1016/j.molcata.2012.09.028

    Article  CAS  Google Scholar 

  11. Salminen E, Rujana L, Mäki-Arvela P, Virtanen P, Salmi T, Mikkola JP (2015) Biomass to value added chemicals: isomerisation of β-pinene oxide over supported ionic liquid catalysts (SILCAs) containing Lewis acids. Catal Today 257:318–321. https://doi.org/10.1016/j.cattod.2014.05.024

    Article  CAS  Google Scholar 

  12. Shojaei S, Kiumarsi A, Moghadam AR, Alizadeh J, Marzban H, Ghavami S (2014) Perillyl alcohol (monoterpene alcohol), limonene. Enzymes 36:7–32. https://doi.org/10.1016/b978-0-12-802215-3.00002-1

    Article  CAS  PubMed  Google Scholar 

  13. Britten-Kelly MR (2000) The beta-pinene route to aroma chemicals. In: IFEAT international conference, Amelia Island, pp 89–98

  14. Gomes BS, Neto BPS, Lopes EM, Cunha FVM, Araújo AR, Wanderley CWS, Wong DVT, Júnior RCPL, Ribeiro RA, Sousa DP, Medeiros JVR, Oliveira RCM, Oliveira FA (2017) Anti-inflammatory effect of the monoterpene myrtenol is dependent on the direct modulation of neutrophil migration and oxidative stress. Chem Biol Interact 273:73–81. https://doi.org/10.1016/j.cbi.2017.05.019

    Article  CAS  PubMed  Google Scholar 

  15. Moreira MRC, Salvadori MGSS, de Almeida AAC, de Sousa DP, Jordán J, Satyal P, de Freitas RM, de Almeida RN (2014) Anxiolytic-like effects and mechanism of (−)-myrtenol: a monoterpene alcohol. Neurosci Lett 579:119–124. https://doi.org/10.1016/j.neulet.2014.07.007

  16. Mäki-Arvela P, Kumar N, Faten S, Aho A, Tenho M, Salonen J, Leino A, Kordás K, Laukkanen P, Dahl J, Sinev I, Salmi T, Yu D (2013) Chemical isomerization of β-pinene oxide over Sn-modified zeolites. J Mol Catal A Chem. 366:228–237. https://doi.org/10.1016/j.molcata.2012.09.028

    Article  CAS  Google Scholar 

  17. Chastain DE, Mody N, Majetich G (1999) Method of preparing perillyl alcohol and perillyl acetate. US Patent 5994598

  18. Jayasree J, Narayanan CS (1995) Part II: transformations of α and β-pinene oxides over binary oxide catalysts of alumina-rare earth oxides. Bull Chem Soc Jpn 68:89–94. https://doi.org/10.1246/bcsj.68.89

    Article  CAS  Google Scholar 

  19. Sánchez-Velandia JE, Villa AL (2019) Isomerization of α- and β-pinene epoxides over Fe or Cu supported MCM-41 and SBA-15 materials. Appl Catal A Gen. https://doi.org/10.1016/j.apcata.2019.04.029

    Article  Google Scholar 

  20. Sánchez-Velandia JE, Gelves JF, Dorkis L, Márquez MA, Villa AL (2019) Ring-opening of β-pinene epoxide into high-added value products over Colombian natural zeolite. Microporous Mesoporous Mater 287:114–123. https://doi.org/10.1016/j.micromeso.2019.05.053

    Article  CAS  Google Scholar 

  21. Vyskočilová E, Malý M, Aho A, Krupka J, Červený L (2016) The solvent effect in β-pinene oxide rearrangement. React Kinet Mech Catal 118:235–246. https://doi.org/10.1007/s11144-016-0994-9

    Article  CAS  Google Scholar 

  22. Vyskočilová E, Dušek J, Babirádová M, Krupka J, Paterová I, Červený L (2018) Perillyl alcohol preparation from β-pinene oxide using Fe-modified zeolite beta. Res Chem Intermed 44:3971–3984. https://doi.org/10.1007/s11164-018-3335-y

    Article  CAS  Google Scholar 

  23. Budhi S, Peeraphatdit C, Pylypenko S, Nguyen VHT, Smith EA, Trewyn BG (2014) Enhanced metal loading in SBA-15-type catalysts facilitated by salt addition: synthesis, characterization and catalytic epoxide alcoholysis activity of molybdenum incorporated porous silica. Appl Catal A Gen 475:469–476. https://doi.org/10.1016/j.apcata.2014.01.055

    Article  CAS  Google Scholar 

  24. Yamada T, Arata K, Itoh M, Hattori H, Tanabe K (1976) Epoxide rearrangement. Bull Chem Soc Jpn 49:2946–2949

    Article  CAS  Google Scholar 

  25. Grün M, Unger KK, Matsumoto A, Tsutsumi K (1999) Novel pathways for the preparation of mesoporous MCM-41 materials: control of porosity and morphology. Microporous Mesoporous Mater 27:207–216. https://doi.org/10.1016/S1387-1811(98)00255-8

    Article  Google Scholar 

  26. Shah P, Ramaswamy AV, Lazar K, Ramaswamy V (2004) Synthesis and characterization of tin oxide-modified mesoporous SBA-15 molecular sieves and catalytic activity in trans-esterification reaction. Appl Catal A Gen 273:239–248. https://doi.org/10.1016/j.apcata.2004.06.039

    Article  CAS  Google Scholar 

  27. Han Y, Kim H, Park J, Lee S, Kim J (2012) Influence of Ti do** level on hydrogen adsorption of mesoporous Ti-SBA-15 materials prepared by direct synthesis. Int J Hydrogen Energy 37:14240–14247. https://doi.org/10.1016/j.ijhydene.2012.07.030

    Article  CAS  Google Scholar 

  28. Marino D, Gallegos NG, Bengoa JF, Alvarez AM, Cagnoli MV, Casuscelli SG, Herrero ER, Marchetti SG (2008) Ti-MCM-41 catalysts prepared by post-synthesis methods. Catal Today 133–135:632–638. https://doi.org/10.1016/j.cattod.2007.12.111

    Article  CAS  Google Scholar 

  29. Higashimoto S, Hu Y, Tsumura R, Iino K, Matsuoka M, Yamashita H, Shul Y, Che M, Anpo M (2005) Synthesis, characterization and photocatalytic reactivities of Mo-MCM-41 mesoporous molecular sieves: effect of the Mo content on the local structures of Mo-oxides. J Catal 235:272–278. https://doi.org/10.1016/j.jcat.2005.08.009

    Article  CAS  Google Scholar 

  30. Klimova T, Rodrı́guez E, Martı́nez M, Ramı́rez J (2001) Synthesis and characterization of hydrotreating Mo catalysts supported on titania-modified MCM-41. Microporous Mesoporous Mater. 44–45:357–365

  31. Chandorkar JG, Umbarkar SB, Rode CV, Kotwal VB, Dongare MK (2007) Synthesis of tinidazole by condensation–oxidation sequence using MoO3/SiO2 bifunctional catalyst. Catal Commun 8:1550–1555. https://doi.org/10.1016/j.catcom.2007.01.001

    Article  CAS  Google Scholar 

  32. Duan A, Wan G, Zhao Z, Xu C, Zheng Y, Zhang Y, Dou T, Bao X, Chung K (2007) Characterization and activity of Mo supported catalysts for diesel deep hydrodesulphurization. Catal Today 119:13–18. https://doi.org/10.1016/j.cattod.2006.08.049

    Article  CAS  Google Scholar 

  33. Sankaranarayanan TM, Pandurangan A, Banu M, Sivasanker S (2011) Transesterification of sunflower oil over MoO3 supported on alumina. Appl Catal A Gen 409–410:239–247. https://doi.org/10.1016/j.apcata.2011.10.013

    Article  CAS  Google Scholar 

  34. Umbarkar B, Kotbagi TV, Biradar AV, Pasricha R, Chanale J, Dongare MK, Mamede A, Lancelot C, Payen E (2009) Chemical acetalization of glycerol using mesoporous MoO3/SiO2 solid acid catalyst. J Mol Catal A 310:150–158. https://doi.org/10.1016/j.molcata.2009.06.010

    Article  CAS  Google Scholar 

  35. Thanabodeekij N, Gulari E, Wongkasemjit S (2007) Highly dispersed Mo–MCM-41 produced from silatrane and molybdenum glycolate precursors and its peroxidation activity. Powder Technol 173:211–216. https://doi.org/10.1016/j.powtec.2007.01.011

    Article  CAS  Google Scholar 

  36. La Parola V, Deganello G, Tewell CR, Venezia AM (2002) Structural characterisation of silica supported CoMo catalysts by UV Raman spectroscopy, XPS and X-ray diffraction techniques. Appl Cat A Gen 235:171–180

    Article  Google Scholar 

  37. Medellín Rivera BL (2010) Síntesis y caracterización de catalizadores Pt-Ge soportados en g-Al2O3. Efecto de la adición de cerio y lantano al soporte. Universidad Autónoma Metropolitana Iztapalapa

  38. Wang Z, Yu S (2016) Synthesis of high-stability acidic β/Al-MCM-41 and the catalytic performance for the esterification of oleic acid. Adv Chem Eng Sci 06:305–315. https://doi.org/10.4236/aces.2016.64031

    Article  CAS  Google Scholar 

  39. Kosslick H, Lischke G, Parlitz B, Storek W, Fricke R (1999) Acidity and active sites of Al-MCM-41. Appl Catal A Gen 184:49–60. https://doi.org/10.1016/S0926-860X(99)00078-2

    Article  CAS  Google Scholar 

  40. Pitínová-Štekrová M, Eliášová P, Weissenberger T, Shamzhy M, Musilová Z, Čejka J (2018) Highly selective synthesis of campholenic aldehyde over Ti-MWW catalysts by α-pinene oxide isomerization. Catal Sci Technol 8:4690–4701. https://doi.org/10.1039/C8CY01231H

    Article  Google Scholar 

  41. Chary KVR, Reddy KR, Kishan G, Niemantsverdriet JW, Mestl G (2004) Structure and catalytic properties of molybdenum oxide catalysts supported on zirconia. J Catal 226:283–291. https://doi.org/10.1016/j.jcat.2004.04.028

    Article  CAS  Google Scholar 

  42. Tanabe K, Takashi S, Katseu S (1974) A new hypothesis regarding the surface acidity of binary metal oxides. Bull Chem Soc Jpn 47:1064–1066

    Article  CAS  Google Scholar 

  43. Lima TM, de Macedo V, Silva DSA, Castelblanco WN, Pereira CA, Roncolatto RE, Gawande MB, Zbořil R, Varma RS, Urquieta-González EA (2020) Molybdenum-promoted cobalt supported on SBA-15: steam and sulfur dioxide stable catalyst for CO oxidation. Appl Catal B Environ 277:119248. https://doi.org/10.1016/j.apcatb.2020.119248

    Article  CAS  Google Scholar 

  44. Yan W, Shen Y, Zhu S, ** Q, Liu Y, Li X (2016) Promotional effect of molybdenum additives on catalytic performance of CeO2/Al2O3 for selective catalytic reduction of NOx. Catal Lett 146:1221–1230. https://doi.org/10.1007/s10562-016-1739-0

    Article  CAS  Google Scholar 

  45. Kitano T, Okazaki S, Shishido T, Teramura K, Tanaka T (2013) Brønsted acid generation of alumina-supported molybdenum oxide calcined at high temperatures: characterization by acid-catalyzed reactions and spectroscopic methods. J Mol Catal A Chem 371:21–28. https://doi.org/10.1016/j.molcata.2013.01.019

    Article  CAS  Google Scholar 

  46. Dirken PJ, Smith ME, Whitfield HJ (1995) 17O and 29Si solid state NMR study of atomic scale structure in sol-gel-prepared TiO2–SiO2 materials. J Phys Chem 99:395–401. https://doi.org/10.1021/j100001a059

    Article  CAS  Google Scholar 

  47. Stekrova M, Kumar N, Aho A, Sinev I, Grünert W, Dahl J, Roine J, Arzumanov SS, Mäki-Arvela P, Murzin DY (2014) Isomerization of α-pinene oxide using Fe-supported catalysts: selective synthesis of campholenic aldehyde. Appl Catal A Gen 470:162–176. https://doi.org/10.1016/j.apcata.2013.10.044

    Article  CAS  Google Scholar 

  48. Adam F, Iqbal A (2011) Silica supported amorphous molybdenum catalysts prepared via sol–gel method and its catalytic activity. Microporous Mesoporous Mater 141:119–127. https://doi.org/10.1016/j.micromeso.2010.10.037

    Article  CAS  Google Scholar 

  49. Sánchez-Velandia JE, Mejía-Chica SM, Villa Holguín AL (2020) Reaction mechanism of the isomerization of monoterpenes epoxides with Fe3+ as active catalytic species a computational approach. J Phys Chem A. https://doi.org/10.1021/acs.jpca.9b09622

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

Authors thank funding from the Ministry of Science, Technology and Innovation, the Ministry of Education, the Ministry of Industry, Commerce and Tourism and ICETEX, programme Ecosistema Científico-Colombia Científica, from the Francisco José de Caldas Fund, Grant RC-FP44842-212-2018. The authors thank also to Universidad de Antioquia for financial support. The authors thank professor Gustavo Fuentes for technical assistance in the UV–Vis, Raman and NMR characterization of the catalysts.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Julián E. Sánchez-Velandia or Aída Luz Villa.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 377 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cruz, M.C., Sánchez-Velandia, J.E., Causíl, S. et al. Selective Synthesis of Perillyl Alcohol from β-Pinene Epoxide over Ti and Mo Supported Catalysts. Catal Lett 151, 2279–2290 (2021). https://doi.org/10.1007/s10562-020-03489-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03489-1

Keywords

Navigation