Log in

Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies

  • Published:
Reviews in Endocrine and Metabolic Disorders Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is by far the most prevalent form of liver disease worldwide. It’s also the leading cause of liver-related hospitalizations and deaths. Furthermore, there is a link between obesity and NAFLD risk. A projected 25% of the world’s population grieves from NAFLD, making it the most common chronic liver disorder. Several factors, such as obesity, oxidative stress, and insulin resistance, typically accompany NAFLD. Weight loss, lipid-lowering agents, thiazolidinediones, and metformin help prominently control NAFLD. Interestingly, pre-clinical studies demonstrate gut microbiota’s potential causal role in NAFLD. Increased intestinal permeability and unhindered transport of microbial metabolites into the liver are the major disruptions due to gut microbiome dysbiosis, contributing to the development of NAFLD by dysregulating the gut-liver axis. Hence, altering the pathogenic bacterial population using probiotics, prebiotics, synbiotics, and fecal microbiota transplantation (FMT) could benefit patients with NAFLD. Therefore, it is crucial to acknowledge the importance of microbiota-mediated therapeutic approaches for NAFLD and comprehend the underlying mechanisms that establish a connection between NAFLD and gut microbiota. This review provides a comprehensive overview of the affiliation between dysbiosis of gut microbiota and the progress of NAFLD, as well as the potential benefits of prebiotic, probiotic, synbiotic supplementation, and FMT in obese individuals with NAFLD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data Availability

No data were used in this review study.

Abbreviations

BA:

Bile acids

DNA:

deoxyribonucleic acid

FFA:

free fatty acid

FMT:

fecal microbiota transplantation

FXR:

Farnesoid X receptor

LPS:

lipopolysaccharides

mRNA:

Messenger ribonucleic acid

NAFLD:

Non-alcoholic fatty liver disease

NASH:

non-alcoholic steatohepatitis

NLR:

NOD-like receptor

NLRP3:

nucleotide-binding,and oligomerization domain-like receptor family pyrin domain-containing 3

SBAs:

Secondary bile acids

SCFA:

Short chain fatty acid

T2DM:

type 2 diabetes mellitus

TG:

triglycerides

TLR:

Toll-like receptor

TMAO:

Trimethylamine N-oxide

TNF-α:

tumor necrosis factor-alpha

References

  1. Lim S, Kim JW, Targher G. Links between metabolic syndrome and metabolic dysfunction-associated fatty liver disease. Trends Endocrinol Metab. 2021;32(7):500–14.

    Article  CAS  PubMed  Google Scholar 

  2. Huh Y, Cho YJ, Nam GE. Recent epidemiology and risk factors of nonalcoholic fatty liver disease. J Obes Metab Syndr. 2022;31(1):17–27.

    Article  PubMed  PubMed Central  Google Scholar 

  3. Kuchay MS, Martínez-Montoro JI, Choudhary NS, et al. Non-alcoholic fatty liver disease in lean and non-obese individuals: current and future challenges. Biomedicines. 2021;9(10):1346.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Overi D, Carpino G, Franchitto A, et al. Hepatocyte injury and hepatic stem cell niche in the progression of non-alcoholic steatohepatitis. Cells. 2020;9(3):590.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alam S, Mustafa G, Alam M, et al. Insulin resistance in development and progression of nonalcoholic fatty liver disease. World J Gastrointest Pathophysiol. 2016;7(2):211–7.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Marušić M, Paić M, Knobloch M, et al. NAFLD, insulin resistance, and diabetes mellitus type 2. Can J Gastroenterol Hepatol. 2021;2021:1–9.

    Article  Google Scholar 

  7. Tilg H, Moschen AR, Roden M. NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 2017;14(1):32–42.

    Article  CAS  PubMed  Google Scholar 

  8. Samuel VT, Shulman GI. Nonalcoholic fatty liver disease, insulin resistance, and ceramides. Phimister EG, ed. N Engl J Med. 2019;381(19):1866–1869.

  9. Dharmalingam M, Yamasandhi P. Nonalcoholic fatty liver disease and type 2 diabetes mellitus. Indian J Endocr Metab. 2018;22(3):421.

    Article  CAS  Google Scholar 

  10. Zhang J, Zhao Y, Xu C, et al. Association between serum free fatty acid levels and nonalcoholic fatty liver disease: a cross-sectional study. Sci Rep. 2014;4(1):5832.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lomonaco R, Godinez Leiva E, Bril F, et al. Advanced liver fibrosis is common in patients with type 2 diabetes followed in the outpatient setting: the need for systematic screening. Diabetes Care. 2021;44(2):399–406.

    Article  PubMed  PubMed Central  Google Scholar 

  12. Hou K, Wu ZX, Chen XY, et al. Microbiota in health and diseases. Sig Transduct Target Ther. 2022;7(1):135.

    Article  Google Scholar 

  13. Tomah S, Alkhouri N, Hamdy O. Nonalcoholic fatty liver disease and type 2 diabetes: where do diabetologists stand? Clin Diabetes Endocrinol. 2020;6(1):9.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Schoeler M, Caesar R. Dietary lipids, gut microbiota and lipid metabolism. Rev Endocr Metab Disord. 2019;20(4):461–72.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Jia X, Xu W, Zhang L, et al. Impact of gut microbiota and microbiota-related metabolites on hyperlipidemia. Front Cell Infect Microbiol. 2021;11:634780.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Anand S, Mande SS. Host-microbiome interactions: gut-liver axis and its connection with other organs. NPJ Biofilms Microbiomes. 2022;8(1):89.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Jasirwan COM, Lesmana CRA, Hasan I, et al. The role of gut microbiota in non-alcoholic fatty liver disease: pathways of mechanisms. Biosci Microbiota Food Health. 2019;38(3):81–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Breton J, Galmiche M, Déchelotte P. Dysbiotic gut bacteria in obesity: an overview of the metabolic mechanisms and therapeutic perspectives of next-generation probiotics. Microorganisms. 2022;10(2):452.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Kang GG, Trevaskis NL, Murphy AJ, et al. Diet-induced gut dysbiosis and inflammation: key drivers of obesity-driven NASH. iScience. 2023;26(1):105905.

    Article  PubMed  Google Scholar 

  20. Asadi A, Shadab Mehr N, Mohamadi MH et al. Obesity and gut–microbiota–brain axis: a narrative review. Clin Lab Anal 2022;36(5).

  21. Diehl AM, Day C. Cause, pathogenesis, and treatment of nonalcoholic steatohepatitis. Longo DL, ed. N Engl J Med. 2017;377(21):2063–2072.

  22. Henao-Mejia J, Elinav E, ** C, et al. Inflammasome-mediated dysbiosis regulates progression of NAFLD and obesity. Nature. 2012;482(7384):179–85.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Feng YY, Chen H. [Nucleotide-binding oligomerization domain-like receptor family pyrin domain containing 3 inflammasome in Alzheimer’s disease]. Zhongguo Yi Xue Ke Xue Yuan Xue Bao. 2021;43(5):788–95.

    PubMed  Google Scholar 

  24. Tang R, Liu R, Zha H et al. Gut microbiota induced epigenetic modifications in the non-alcoholic fatty liver disease pathogenesis. Eng Life Sci. 2023;e2300016.

  25. Atic AI, Thiele M, Munk A, et al. Circulating miRNAs associated with nonalcoholic fatty liver disease. Am J Physiol Cell Physiol. 2023;324:C588–c602.

    Article  CAS  PubMed  Google Scholar 

  26. Arab JP, Arrese M, Shah VH. Gut microbiota in non-alcoholic fatty liver disease and alcohol‐related liver disease: current concepts and perspectives. Hepatol Res. 2020;50(4):407–18.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Hydes TJ, Ravi S, Loomba R, et al. Evidence-based clinical advice for nutrition and dietary weight loss strategies for the management of NAFLD and NASH. Clin Mol Hepatol. 2020;26(4):383–400.

    Article  PubMed  PubMed Central  Google Scholar 

  28. Zelber-Sagi S. Nutrition and physical activity in NAFLD: an overview of the epidemiological evidence. WJG. 2011;17(29):3377.

    Article  PubMed  PubMed Central  Google Scholar 

  29. Park Y, Sinn DH, Kim K, et al. Associations of physical activity domains and muscle strength exercise with non-alcoholic fatty liver disease: a nation-wide cohort study. Sci Rep. 2023;13(1):4724.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Lange NF, Graf V, Caussy C, et al. PPAR-targeted therapies in the treatment of non-alcoholic fatty liver disease in diabetic patients. IJMS. 2022;23(8):4305.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Paternostro R, Trauner M. Current treatment of non-alcoholic fatty liver disease. J Intern Med. 2022;292(2):190–204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Głuszyńska P, Lemancewicz D, Dzięcioł JB, et al. Non-alcoholic fatty liver disease (NAFLD) and bariatric/metabolic surgery as its treatment option: a review. JCM. 2021;10(24):5721.

    Article  PubMed  PubMed Central  Google Scholar 

  33. Carpi RZ, Barbalho SM, Sloan KP, et al. The effects of probiotics, prebiotics and synbiotics in non-alcoholic fat liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH): a systematic review. IJMS. 2022;23(15):8805.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Khan A, Ding Z, Ishaq M, et al. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: recent updates. Int J Biol Sci. 2021;17(3):818–33. https://doi.org/10.7150/ijbs.56214.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Tan P, Li X, Shen J, et al. Fecal microbiota transplantation for the treatment of inflammatory bowel disease: an update. Front Pharmacol. 2020;11:574533.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Zheng L, Ji YY, Wen XL, et al. Fecal microbiota transplantation in the metabolic diseases: current status and perspectives. WJG. 2022;28(23):2546–60.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Zhao Y, Gong C, Xu J, et al. Research progress of fecal microbiota transplantation in liver diseases. JCM. 2023;12(4):1683.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Cani PD. Human gut microbiome: hopes, threats and promises. Gut. 2018;67(9):1716–25.

    Article  CAS  PubMed  Google Scholar 

  39. Rinninella E, Raoul P, Cintoni M, et al. What is the healthy gut microbiota composition? A changing ecosystem across age, environment, diet, and diseases. Microorganisms. 2019;7(1):14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Woźniak D, Cichy W, Przysławski J, et al. The role of microbiota and enteroendocrine cells in maintaining homeostasis in the human digestive tract. Adv Med Sci. 2021;66(2):284–92.

    Article  PubMed  Google Scholar 

  41. **a Y, Ren M, Yang J, et al. Gut microbiome and microbial metabolites in NAFLD and after bariatric surgery: correlation and causality. Front Microbiol. 2022;13:1003755.

    Article  PubMed  PubMed Central  Google Scholar 

  42. Singh R, Zogg H, Wei L, et al. Gut microbial dysbiosis in the pathogenesis of gastrointestinal dysmotility and metabolic disorders. J Neurogastroenterol Motil. 2021;27(1):19–34.

    Article  PubMed  PubMed Central  Google Scholar 

  43. Abenavoli L, Scarlata GGM, Scarpellini E, et al. Metabolic-dysfunction-associated fatty liver disease and gut microbiota: from fatty liver to dysmetabolic syndrome. Medicina. 2023;59(3):594.

    Article  PubMed  PubMed Central  Google Scholar 

  44. Hrncir T. Gut microbiota dysbiosis: triggers, consequences, diagnostic and therapeutic options. Microorganisms. 2022;10(3):578.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Wu HJ, Wu E. The role of gut microbiota in immune homeostasis and autoimmunity. Gut Microbes. 2012;3(1):4–14.

    Article  PubMed  PubMed Central  Google Scholar 

  46. Zheng D, Liwinski T, Elinav E. Interaction between microbiota and immunity in health and disease. Cell Res. 2020;30(6):492–506.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Forlano R, Mullish BH, Roberts LA, et al. The intestinal barrier and its dysfunction in patients with metabolic diseases and non-alcoholic fatty liver disease. IJMS. 2022;23(2):662.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Takiishi T, Fenero CIM, Câmara NOS. Intestinal barrier and gut microbiota: sha** our immune responses throughout life. Tissue Barriers. 2017;5(4):e1373208.

    Article  PubMed  PubMed Central  Google Scholar 

  49. Zhou J, Tripathi M, Sinha RA et al. Gut microbiota and their metabolites in the progression of non-alcoholic fatty liver disease. HR. 2021;2021.

  50. Fang J, Yu CH, Li XJ, et al. Gut dysbiosis in nonalcoholic fatty liver disease: pathogenesis, diagnosis, and therapeutic implications. Front Cell Infect Microbiol. 2022;12:997018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Pan Y, Zhang X. Diet and gut microbiome in fatty liver and its associated liver cancer. J Gastro and Hepatol. 2022;37(1):7–14.

    Article  Google Scholar 

  52. Jiang X, Zheng J, Zhang S, et al. Advances in the involvement of gut microbiota in pathophysiology of NAFLD. Front Med. 2020;7:361.

    Article  Google Scholar 

  53. Albhaisi SAM, Bajaj JS. The influence of the microbiome on NAFLD and NASH. Clin Liver Dis. 2021;17(1):15–8.

    Article  Google Scholar 

  54. Gudan A, Kozłowska-Petriczko K, Wunsch E, et al. Small intestinal bacterial overgrowth and non-alcoholic fatty liver disease: what do we know in 2023? Nutrients. 2023;15(6):1323.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Deehan EC, Zhang Z, Riva A, et al. Elucidating the role of the gut microbiota in the physiological effects of dietary fiber. Microbiome. 2022;10(1):77.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Wang H, Mehal W, Nagy LE, et al. Immunological mechanisms and therapeutic targets of fatty liver diseases. Cell Mol Immunol. 2021;18(1):73–91.

    Article  CAS  PubMed  Google Scholar 

  57. Fukunishi S, Sujishi T, Takeshita A, et al. Lipopolysaccharides accelerate hepatic steatosis in the development of nonalcoholic fatty liver disease in Zucker rats. J Clin Biochem Nutr. 2014;54(1):39–44.

    Article  CAS  PubMed  Google Scholar 

  58. Staley C, Weingarden AR, Khoruts A, et al. Interaction of gut microbiota with bile acid metabolism and its influence on disease states. Appl Microbiol Biotechnol. 2017;101(1):47–64.

    Article  CAS  PubMed  Google Scholar 

  59. Bertolini A, Fiorotto R, Strazzabosco M. Bile acids and their receptors: modulators and therapeutic targets in liver inflammation. Semin Immunopathol. 2022;44(4):547–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Stofan M, Guo GL. Bile acids and fxr: novel targets for liver diseases. Front Med. 2020;7:544.

    Article  Google Scholar 

  61. Kiriyama Y, Nochi H. Physiological role of bile acids modified by the gut microbiome. Microorganisms. 2021;10(1):68.

    Article  PubMed  PubMed Central  Google Scholar 

  62. Yu Y, Raka F, Adeli K. The role of the gut microbiota in lipid and lipoprotein metabolism. JCM. 2019;8(12):2227.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Radun R, Trauner M. Role of FXR in bile acid and metabolic homeostasis in NASH: pathogenetic concepts and therapeutic opportunities. Semin Liver Dis. 2021;41(04):461–75.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. https://www.statnews.com/2023/06/22/intercept-nash-obeticholic-acid-fda-rejection.

  65. Friedman SL, Neuschwander-Tetri BA, Rinella M, et al. Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 2018;24(7):908–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Xu Z, Jiang W, Huang W, et al. Gut microbiota in patients with obesity and metabolic disorders — a systematic review. Genes Nutr. 2022;17(1):2.

    Article  PubMed  PubMed Central  Google Scholar 

  67. Liwinski T, Heinemann M, Schramm C. The intestinal and biliary microbiome in autoimmune liver disease-current evidence and concepts. Semin Immunopathol. 2022;44(4):485–507.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Li F, Ye J, Shao C, et al. Compositional alterations of gut microbiota in nonalcoholic fatty liver disease patients: a systematic review and Meta-analysis. Lipids Health Dis. 2021;20(1):22.

    Article  PubMed  PubMed Central  Google Scholar 

  69. Juárez-Fernández M, Porras D, Petrov P, et al. The synbiotic combination of Akkermansia Muciniphila and quercetin ameliorates early obesity and NAFLD through gut microbiota resha** and bile acid metabolism modulation. Antioxidants. 2021;10(12):2001.

    Article  PubMed  PubMed Central  Google Scholar 

  70. Xu Y, Wang N, Tan HY, et al. Function of akkermansia muciniphila in obesity: interactions with lipid metabolism, immune response and gut systems. Front Microbiol. 2020;11:219.

    Article  PubMed  PubMed Central  Google Scholar 

  71. Régnier M, Rastelli M, Morissette A, et al. Rhubarb supplementation prevents diet-induced obesity and diabetes in association with increased Akkermansia Muciniphila in mice. Nutrients. 2020;12(10):2932.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Gieryńska M, Szulc-Dąbrowska L, Struzik J, et al. Integrity of the intestinal barrier: the involvement of epithelial cells and microbiota—a mutual relationship. Animals. 2022;12(2):145.

    Article  PubMed  PubMed Central  Google Scholar 

  73. Mori–Akiyama Y, Van Den Born M, Van Es JH, et al. SOX9 is required for the differentiation of paneth cells in the intestinal epithelium. Gastroenterology. 2007;133(2):539–46.

    Article  PubMed  Google Scholar 

  74. Zhang S, Tun HM, Zhang D, et al. Alleviation of hepatic steatosis: dithizone-related gut microbiome restoration during paneth cell dysfunction. Front Microbiol. 2022;13:813783.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Paone P, Cani PD. Mucus barrier, mucins and gut microbiota: the expected slimy partners? Gut. 2020;69(12):2232–43.

    Article  CAS  PubMed  Google Scholar 

  76. Yang S, Yu M. Role of goblet cells in intestinal barrier and mucosal immunity. JIR 2021;Volume 14:3171–83.

  77. Fang J, Wang H, Zhou Y, et al. Slimy partners: the mucus barrier and gut microbiome in ulcerative colitis. Exp Mol Med. 2021;53(5):772–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  78. Campbell HK, Maiers JL, DeMali KA. Interplay between tight junctions & adherens junctions. Exp Cell Res. 2017;358(1):39–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  79. Yuksel H, Ocalan M, Yilmaz O. E-cadherin: an important functional molecule at respiratory barrier between defence and dysfunction. Front Physiol. 2021;12:720227.

    Article  PubMed  PubMed Central  Google Scholar 

  80. Buckley A, Turner JR. Cell biology of tight junction barrier regulation and mucosal disease. Cold Spring Harb Perspect Biol. 2018;10(1):a029314.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Di Tommaso N, Gasbarrini A, Ponziani FR. Intestinal barrier in human health and disease. IJERPH. 2021;18(23):12836.

    Article  PubMed  PubMed Central  Google Scholar 

  82. **ong J, Chen X, Zhao Z, et al. A potential link between plasma short-chain fatty acids, TNF-α level and disease progression in non-alcoholic fatty liver disease: a retrospective study. Exp Ther Med. 2022;24(3):598.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  83. Sohail MU, Althani A, Anwar H et al. Role of the gastrointestinal tract microbiome in the pathophysiology of diabetes mellitus. J Diabetes Res 2017: 9631435.

  84. Mallat A, Teixeira-Clerc F, Deveaux V, et al. The endocannabinoid system as a key mediator during liver diseases: new insights and therapeutic openings. Br J Pharmacol. 2011;163(7):1432–40.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Srivastava RK, Lutz B, Ruiz de Azua I. The Microbiome and gut endocannabinoid system in the regulation of stress responses and metabolism. Front Cell Neurosci. 2022;16:867267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Arias N, Arboleya S, Allison J, et al. The relationship between Choline bioavailability from diet, intestinal microbiota composition, and its modulation of human diseases. Nutrients. 2020;12(8):2340.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Oliphant K, Allen-Vercoe E. Macronutrient metabolism by the human gut microbiome: major fermentation by-products and their impact on host health. Microbiome. 2019;7:91.

    Article  PubMed  PubMed Central  Google Scholar 

  88. Khan A, Ding Z, Ishaq M, et al. Understanding the effects of gut microbiota dysbiosis on nonalcoholic fatty liver disease and the possible probiotics role: recent updates. Int J Biol Sci. 2021;17(3):818–33.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Markowiak P, Śliżewska K. Effects of probiotics, prebiotics, and synbiotics on human health. Nutrients. 2017;9(9):1021.

    Article  PubMed  PubMed Central  Google Scholar 

  90. Luo M, Yan J, Wu L, et al. Probiotics alleviated nonalcoholic fatty liver disease in high-fat diet-fed rats via gut microbiota/fxr/fgf15 signaling pathway. J Immunol Res. 2021;2021:1–10.

    Article  Google Scholar 

  91. Huang Y, Wang X, Zhang L, et al. Effect of probiotics therapy on nonalcoholic fatty liver disease. Comput Math Methods Med. 2022;2022:1–15.

    Article  CAS  Google Scholar 

  92. Arai N, Miura K, Aizawa K, et al. Probiotics suppress nonalcoholic steatohepatitis and carcinogenesis progression in hepatocyte-specific PTEN knockout mice. Sci Rep. 2022;12(1):16206.

    Article  CAS  PubMed Central  Google Scholar 

  93. Ritze Y, Bárdos G, Claus A et al. Lactobacillus rhamnosus gg protects against non-alcoholic fatty liver disease in mice. Covasa M, ed. PLoS ONE. 2014;9(1):e80169.

  94. Scorletti E, Afolabi PR, Miles EA, et al. Synbiotics alter fecal microbiomes, but not liver fat or fibrosis, in a randomized trial of patients with nonalcoholic fatty liver disease. Gastroenterology. 2020;158(6):1597–1610e7.

    Article  CAS  PubMed  Google Scholar 

  95. Kobyliak N, Abenavoli L, Mykhalchyshyn G, et al. A multi-strain probiotic reduces the fatty liver index, cytokines and aminotransferase levels in nafld patients: evidence from a randomized clinical trial. JGLD. 2018;27(1):41–9.

    Article  PubMed  Google Scholar 

  96. Behrouz V, Aryaeian N, Zahedi MJ, et al. Effects of probiotic and prebiotic supplementation on metabolic parameters, liver aminotransferases, and systemic inflammation in nonalcoholic fatty liver disease: a randomized clinical trial. J Food Sci. 2020;85(10):3611–7.

    Article  CAS  PubMed  Google Scholar 

  97. Chong CYL, Orr D, Plank LD, et al. Randomised double-blind placebo-controlled trial of inulin with metronidazole in non-alcoholic fatty liver disease (NAFLD). Nutrients. 2020;12(4):937.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Ayob N, Muhammad Nawawi KN, Mohamad Nor MH, et al. The effects of probiotics on small intestinal microbiota composition, inflammatory cytokines and intestinal permeability in patients with non-alcoholic fatty liver disease. Biomedicines. 2023;11(2):640.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Naudin CR, Maner-Smith K, Owens JA, et al. Lactococcus lactis subspecies cremoris elicits protection against metabolic changes induced by a western-style diet. Gastroenterology. 2020;159(2):639–651e5.

    Article  CAS  PubMed  Google Scholar 

  100. Choi SI, You S, Kim S et al. Weissella cibaria MG5285 and Lactobacillus reuteri MG5149 attenuated fat accumulation in adipose and hepatic steatosis in high-fat diet-induced C57BL/6J obese mice. Food & Nutr Res. 2021;65.

  101. Werlinger P, Nguyen HT, Gu M, et al. Lactobacillus reuteri mjm60668 prevent progression of non-alcoholic fatty liver disease through anti-adipogenesis and anti-inflammatory pathway. Microorganisms. 2022;10(11):2203.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  102. Hu W, Gao W, Liu Z, et al. Specific strains of faecalibacterium prausnitzii ameliorate nonalcoholic fatty liver disease in mice in association with gut microbiota regulation. Nutrients. 2022;14(14):2945.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  103. Bakhshimoghaddam F, Shateri K, Sina M, et al. Daily consumption of synbiotic yogurt decreases liver steatosis in patients with nonalcoholic fatty liver disease: a randomized controlled clinical trial. J Nutr. 2018;148(8):1276–84.

    Article  PubMed  Google Scholar 

  104. Ahn SB, Jun DW, Kang BK, et al. Randomized, double-blind, placebo-controlled study of a multispecies probiotic mixture in nonalcoholic fatty liver disease. Sci Rep. 2019;9(1):5688.

    Article  PubMed  PubMed Central  Google Scholar 

  105. Chong PL, Laight D, Aspinall RJ, et al. A randomised placebo controlled trial of VSL#3® probiotic on biomarkers of cardiovascular risk and liver injury in non-alcoholic fatty liver disease. BMC Gastroenterol. 2021;21(1):144.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  106. Nguyen HT, Gu M, Werlinger P, et al. Lactobacillus sakei mjm60958 as a potential probiotic alleviated non-alcoholic fatty liver disease in mice fed a high-fat diet by modulating lipid metabolism, inflammation, and gut microbiota. IJMS. 2022;23(21):13436.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  107. Do MH, Oh MJ, Lee HB, et al. Bifidobacterium animalis ssp. Lactis mg741 reduces body weight and ameliorates nonalcoholic fatty liver disease via improving the gut permeability and amelioration of inflammatory cytokines. Nutrients. 2022;14(9):1965.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  108. Yan Y, Liu C, Zhao S, et al. Probiotic Bifidobacterium lactis V9 attenuates hepatic steatosis and inflammation in rats with non-alcoholic fatty liver disease. AMB Expr. 2020;10(1):101.

    Article  CAS  Google Scholar 

  109. Zhang Z, Zhou H, Zhou X, et al. lactobacillus casei yrl577 ameliorates markers of non-alcoholic fatty liver and alters expression of genes within the intestinal bile acid pathway. Br J Nutr. 2021;125(5):521–9.

    Article  CAS  PubMed  Google Scholar 

  110. Kothari D, Patel S, Kim SK. Probiotic supplements might not be universally-effective and safe: a review. Biomed Pharmacother. 2019;111:537–47.

    Article  CAS  PubMed  Google Scholar 

  111. Kim S, Lee Y, Kim Y, et al. Akkermansia muciniphila prevents fatty liver disease, decreases serum triglycerides, and maintains gut homeostasis. Appl Environ Microbiol. 2020;86:e03004–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  112. Plovier H, Everard A, Druart C, et al. A purified membrane protein from Akkermansia muciniphila or the pasteurized bacterium improves metabolism in obese and diabetic mice. Nat Med. 2017;23:107–13.

    Article  CAS  PubMed  Google Scholar 

  113. Jian H, Liu Y, Wang X, et al. Akkermansia muciniphila as a next-generation probiotic in modulating human metabolic homeostasis and disease progression: a role mediated by gut-liver-brain axes? Int J Mol Sci. 2023;24(4):3900.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  114. Chiantera V, Laganà AS, Basciani S, et al. A critical perspective on the supplementation of Akkermansia muciniphila: benefits and harms. Life (Basel). 2023;13(6):1247.

    CAS  PubMed  Google Scholar 

  115. Zou Y, Chen T. Engineered Akkermansia muciniphila: a promising agent against diseases (review). Exp Ther Med. 2020;20(6):285.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Han TR, Yang WJ, Tan QH, et al. Gut microbiota therapy for nonalcoholic fatty liver disease: evidence from randomized clinical trials. Front Microbiol. 2023;13:1004911.

    Article  PubMed  PubMed Central  Google Scholar 

  117. Cho JM, Pestana L, Pardi R, et al. Fecal microbiota transplant via colonoscopy may be preferred due to intraprocedure findings. Intest Res. 2019;17(3):434–7.

    Article  PubMed  PubMed Central  Google Scholar 

  118. Almeida C, Oliveira R, Baylina P, et al. Current trends and challenges of fecal microbiota transplantation—an easy method that works for all? Biomedicines. 2022;10(11):2742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  119. Xue L, Deng Z, Luo W, et al. Effect of fecal microbiota transplantation on non-alcoholic fatty liver disease: a randomized clinical trial. Front Cell Infect Microbiol. 2022;12:759306.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  120. Witjes JJ, Smits LP, Pekmez CT, et al. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun. 2020;4(11):1578–90.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  121. Craven L, Rahman A, Nair Parvathy S, et al. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol. 2020;115:1055–65.

    Article  PubMed  Google Scholar 

  122. Lahtinen P, Juuti A, Luostarinen M, et al. Effectiveness of fecal microbiota transplantation for weight loss in patients with obesity undergoing bariatric surgery: a randomized clinical trial. JAMA Netw Open. 2022;5(12):e2247226.

    Article  PubMed  PubMed Central  Google Scholar 

  123. Zhou D, Pan Q, Shen F, et al. Total fecal microbiota transplantation alleviates high-fat diet-induced steatohepatitis in mice via beneficial regulation of gut microbiota. Sci Rep. 2017;7(1):1529.

    Article  PubMed  PubMed Central  Google Scholar 

  124. Vrieze A, Van Nood E, Holleman F, et al. Transfer of intestinal microbiota from lean donors increases insulin sensitivity in individuals with metabolic syndrome. Gastroenterology. 2012;143(4):913–916e7.

    Article  CAS  PubMed  Google Scholar 

  125. Kelly CR, Ihunnah C, Fischer M, et al. Fecal microbiota transplant for treatment of clostridium difficile infection in immunocompromised patients. Am J Gastroenterol. 2014;109(7):1065–71.

    Article  PubMed  PubMed Central  Google Scholar 

  126. Freitag TL, Hartikainen A, Jouhten H, et al. Minor effect of antibiotic pre-treatment on the engraftment of donor microbiota in fecal transplantation in mice. Front Microbiol. 2019;10:2685.

    Article  PubMed  PubMed Central  Google Scholar 

  127. Bárcena C, Valdés-Mas R, Mayoral P, et al. Healthspan and lifespan extension by fecal microbiota transplantation into progeroid mice. Nat Med. 2019;25(8):1234–42.

    Article  PubMed  Google Scholar 

  128. Le Bastard Q, Ward T, Sidiropoulos D, et al. Fecal microbiota transplantation reverses antibiotic and chemotherapy-induced gut dysbiosis in mice. Sci Rep. 2018;8(1):6219.

    Article  PubMed  PubMed Central  Google Scholar 

  129. Zeng X, Li X, Li X, et al. Fecal microbiota transplantation from young mice rejuvenates aged hematopoietic stem cells by suppressing inflammation. Blood. 2023;141(14):1691–707.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  130. Park SY, Seo GS. Fecal microbiota transplantation: is it safe? Clin Endosc. 2021;54(2):157–60.

    Article  PubMed  PubMed Central  Google Scholar 

  131. Forlano R, Sivakumar M, Mullish BH, et al. Gut microbiota—a future therapeutic target for people with non-alcoholic fatty liver disease: a systematic review. IJMS. 2022;23(15):8307.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  132. Pandey Kavita R, Naik Suresh R, Vakil Babu V. Probiotics, prebiotics and synbiotics- a review. J Food Sci Technol. 2015;52(12):7577–87.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Marrs T, Walter J. Pros and cons: is faecal microbiota transplantation a safe and efficient treatment option for gut dysbiosis? Allergy. 2021;76(7):2312–7.

    Article  PubMed  Google Scholar 

  134. Kolodziejczyk AA, Zheng D, Shibolet O, et al. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019;11(2):e9302.

    Article  PubMed  Google Scholar 

  135. Tkach S, Dorofeyev A, Kuzenko I, et al. Current status and future therapeutic options for fecal microbiota transplantation. Med (Kaunas). 2022;58(1):84.

    Google Scholar 

Download references

Acknowledgements

The authors thank the Tenth People’s Affiliated Hospital of Tongji University for providing the workplace to prepare the review.

Funding

This work was supported by the National Key R&D Program of China (No. 2018YFC1314101, 2016YFC1305600), National Natural Science Foundation of China (82170861, 81970677), Fundamental Research Funds for the Central Universities of Tongji University (22120190210), Clinical Research Plan of SHDC(SHDC2020CR1017B), and Shanghai Committee of Science and Technology, China (19DZ1910200, 18411951803, 17DZ1910603).

Author information

Authors and Affiliations

Authors

Contributions

Muthukumaran Jayachandran has conceptualized, written, proofread, and finalized the review; Qu Shen has conceptualized, proofread and approved the study.

Corresponding author

Correspondence to Shen Qu.

Ethics declarations

Conflict of interest

Authors declare no conflict of interests.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jayachandran, M., Qu, S. Non-alcoholic fatty liver disease and gut microbial dysbiosis- underlying mechanisms and gut microbiota mediated treatment strategies. Rev Endocr Metab Disord 24, 1189–1204 (2023). https://doi.org/10.1007/s11154-023-09843-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11154-023-09843-z

Keywords

Navigation