Log in

Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD

  • Review
  • Published:
Inflammation Research Aims and scope Submit manuscript

Abstract

Non-alcoholic fatty liver disease (NAFLD) is a multifaceted disease allied with various metabolic disorders, obesity and dysbiosis. Gut microbiota plays an influential role in the pathogenesis of NAFLD and other metabolic disorders. However, recent scientific upsurge emphasizes on the utility of beneficial gut microbiota and bacteriotherapy in the management of NAFLD. Fecal microbiota transplantation (FMT) is the contemporary therapeutic approach with state-of-the-art methods for the treatment of NAFLD. Other potential therapies include probiotics and prebiotics supplements which are based on alteration of gut microbes to treat NAFLD. In this review, our major focus is on the pathological association of gut microbiota with progression of NAFLD, historical aspects and recent advances in FMT with possible intervention to combat NAFLD and its associated metabolic dysfunctions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Availability of data and materials

Data and material regarding the material reported as self-citation by the authors in this Mini-review is available upon request.

Abbreviations

ACC:

Acetyl Co-A carboxylase

AEs:

Adverse events

BMI:

Body mass index

CDI:

Clostridium difficile infection

CD4:

Cluster of differentiation 4

CRP:

C-reactive protein

DNL:

De novo lipogenesis

FIAF:

Fasting-induced adipose factor

FFA:

Free fatty acid

FMT:

Fecal matter transplantation

IL:

Interleukin

HCC:

Hepatocellular carcinoma

HDL-c:

High density lipoprotein cholesterol

IR:

Insulin resistance

LPL:

Lipopolysaccharide

NAFLD:

Non-alcoholic fatty liver disease

NASH:

Non-alcoholic steatohepatitis

NF-kB:

Nuclear factor kappa-B cells

SCFA:

Short chain fatty acid

SREBP:

Sterol regulatory element binding protein

TLR:

Toll-like receptor

TNF:

Tumor necrosis factor

VLDL:

Very low-density lipoprotein

References

  1. Aller R, Izaola O, Primo D, de Luis D. Cholesteryl ester transfer protein variant (RS1800777) with liver histology in non-alcoholic fatty liver disease patients. Ann Nutr Metab. 2018;73:265–70. https://doi.org/10.1159/000493552.

    Article  CAS  PubMed  Google Scholar 

  2. Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J, Bugianesi E. Global burden of NAFLD and NASH: trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 2018;15:1061–71. https://doi.org/10.1038/nrgastro.2017.109.

    Article  Google Scholar 

  3. Fan JG, Kim SU, Wong VW. New trends on obesity and NAFLD in Asia. J Hepatolol. 2017;67:862–73. https://doi.org/10.1038/ajg.2013.257.

    Article  CAS  Google Scholar 

  4. Tremaroli V, Bäckhed F. Functional interactions between the gut microbiota and host metabolism. Nature. 2012;489:242. https://doi.org/10.1038/nature11552.

    Article  CAS  PubMed  Google Scholar 

  5. Gérard P. Gut microbiota and obesity. Cell Mol Life Sci. 2016;73:147–62. https://doi.org/10.1007/s00018-015-2061-5.

    Article  CAS  PubMed  Google Scholar 

  6. Chen HT, Huang HL, Li YQ, Xu HM, Zhou YJ. Therapeutic advances in non-alcoholic fatty liver disease: a microbiota-centered view. World J Gastroenterol. 2020;26(16):1901. https://doi.org/10.3748/wjg.v26.i16.1901.

    Article  PubMed  PubMed Central  Google Scholar 

  7. Marotz CA, Zarrinpar A. Focus: microbiome—treating obesity and metabolic syndrome with fecal microbiota transplantation. Yale J Biol Med. 2016;89:383.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Iacono A, Raso GM, Canani RB, Calignano A, Meli R. Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms. J Nutr Biochem. 2011;22(8):699–711. https://doi.org/10.1016/j.jnutbio.2010.10.002.

    Article  CAS  PubMed  Google Scholar 

  9. Bäckhed F, Ding H, Wang T, Hooper LV, Koh GY, Nagy A, Semenkovich CF, Gordon JI. The gut microbiota as an environmental factor that regulates fat storage. Proc Natl Acad Sci. 2004;101(44):15718–23. https://doi.org/10.1073/pnas.0407076101.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Turnbaugh PJ, Ley RE, Mahowald MA, Magrini V, Mardis ER, Gordon JI. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 2006;444(7122):1027. https://doi.org/10.1038/nature05414.

    Article  PubMed  Google Scholar 

  11. Bäckhed F, Manchester JK, Semenkovich CF, Gordon JI. Mechanisms underlying the resistance to diet-induced obesity in germ-free mice. Proc Natl Acad Sci. 2007;104(3):979–84. https://doi.org/10.1073/pnas.0605374104.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Ridaura VK, Faith JJ, Rey FE, Cheng J, Duncan AE, Kau AL, Griffin NW, Lombard V, Henrissat B, Bain JR, Muehlbauer MJ. Gut microbiota from twins discordant for obesity modulate metabolism in mice. Science. 2013. https://doi.org/10.1126/science.1241214.

    Article  PubMed  PubMed Central  Google Scholar 

  13. Caesar R, Tremaroli V, Kovatcheva-Datchary P, Cani PD, Bäckhed F. Crosstalk between gut microbiota and dietary lipids aggravates WAT inflammation through TLR signaling. Cell Metab. 2015;22:658–68. https://doi.org/10.1016/j.cmet.2015.07.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Tiniakos DG, Vos MB, Brunt EM. Nonalcoholic fatty liver disease: pathology and pathogenesis. Ann Rev Pathol. 2010;5:145–71. https://doi.org/10.1146/annurev-pathol-121808-102132.

    Article  CAS  Google Scholar 

  15. Onkar B, Savera A, Nirupma T, Gayatri R, Pawan K. Molecular and pathological events involved in the pathogenesis of diabetes associated non-alcoholic fatty liver disease. J Clin Exp Hepatol. 2018. https://doi.org/10.1016/j.jceh.2018.10.004.

    Article  Google Scholar 

  16. Armstrong MJ, Adams LA, Canbay A, Syn WK. Extrahepatic complications of nonalcoholic fatty liver disease. Hepatology. 2014;59:1174–97. https://doi.org/10.1002/hep.26717.

    Article  CAS  PubMed  Google Scholar 

  17. Yu J, Marsh S, Hu J, Feng W, Wu C. The pathogenesis of nonalcoholic fatty liver disease: interplay between diet, gut microbiota, and genetic background. Gastroenterol Res Pract. 2016. https://doi.org/10.1155/2016/2862173.

    Article  PubMed  PubMed Central  Google Scholar 

  18. Hochrath K, Schnabl B. Check your microbiota when taking the drug. J Hepatol. 2018;67:18–20. https://doi.org/10.1002/hep.29422.

    Article  Google Scholar 

  19. Kolodziejczyk AA, Zheng D, Shibolet O, Elinav E. The role of the microbiome in NAFLD and NASH. EMBO Mol Med. 2019. https://doi.org/10.15252/emmm.201809302.

    Article  PubMed  Google Scholar 

  20. Leung C, Rivera L, Furness JB, Angus PW. The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol Hepatol. 2016;13:412.

    Article  CAS  Google Scholar 

  21. Luedde T, Schwabe RF. NF-κB in the liver—linking injury, fibrosis and hepatocellular carcinoma. Nat Rev Gastroenterol Hepatol. 2011;8:108–18. https://doi.org/10.1038/nrgastro.2010.213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. De Groot PF, Frissen MN, de Clercq NC, Nieuwdorp M. Fecal microbiota transplantation in metabolic syndrome: history, present and future. Gut microbes. 2017;28:253–67. https://doi.org/10.1080/19490976.2017.1293224.

    Article  Google Scholar 

  23. Lebaka VR, Wee YJ, Narala VR, Joshi VK. Development of new probiotic foods—a case study on probiotic juices. Ther Probiot Unconv Foods. 2018. https://doi.org/10.1016/B978-0-12-814625-5.00004-2.

    Article  Google Scholar 

  24. Zhang F, Luo W, Shi Y, Fan Z, Ji G. Should we standardize the 1,700-year-old fecal microbiota transplantation? Am J Gastroenterol. 2012;107:1755. https://doi.org/10.1038/ajg.2012.251.

    Article  PubMed  Google Scholar 

  25. Zhou Y, Zheng T, Chen H. Microbial intervention as a novel target in treatment of non-alcoholic fatty liver disease progression. Cell Physiol Biochem. 2018;51:2123–35. https://doi.org/10.1159/000495830.

    Article  CAS  PubMed  Google Scholar 

  26. Vrieze A, de Groot PF, Kootte RS, Knaapen M, Van Nood E, Nieuwdorp M. Fecal transplant: a safe and sustainable clinical therapy for restoring intestinal microbial balance in human disease? Best Pract Res Clin Gastroenterol. 2013;27(1):127–37. https://doi.org/10.1016/j.bpg.2013.03.003.

    Article  CAS  PubMed  Google Scholar 

  27. Todesco T, Rao AV, Bosello O, Knaapen M, Van Nood E, Nieuwdorp M. Propionate lowers blood glucose and alters lipid metabolism in healthy subjects. Am J Clin Nutr. 1991;54:860–5. https://doi.org/10.1093/ajcn/54.5.860.

    Article  CAS  PubMed  Google Scholar 

  28. Guo W, Wang P, Liu ZH, Ye P. Analysis of differential expression of tight junction proteins in cultured oral epithelial cells altered by Porphyromonas gingivalis, Porphyromonas gingivalis lipopolysaccharide, and extracellular adenosine triphosphate. Int J Oral Sci. 2018;10:e8. https://doi.org/10.1038/ijos.2017.51.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hu S, Wang J, Wang J, Yang H, Yan X, Su L. Fucoidan from Acaudina molpadioides improves insulin resistance by altering gut microbiota dysfunction. J Funct Foods. 2019;57:59–67. https://doi.org/10.1016/j.jff.2019.03.033.

    Article  CAS  Google Scholar 

  30. Hardie DG, Carling D. The AMP-activated protein kinase: fuel gauge of the mammalian cell? Eur J Biochem. 1997;246(2):259–73. https://doi.org/10.1111/j.1432-1033.1997.00259.x.

    Article  CAS  PubMed  Google Scholar 

  31. Mogensen TH. Pathogen recognition and inflammatory signaling in innate immune defenses. Clin Microbiol Rev. 2009;22(2):240–73. https://doi.org/10.1128/CMR.00046-08.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Freeland KR, Wolever TM. Acute effects of intravenous and rectal acetate on glucagon-like peptide-1, peptide YY, ghrelin, adiponectin and tumour necrosis factor-α. Br J Nutr. 2010;103(3):460–6. https://doi.org/10.1017/S0007114509991863.

    Article  CAS  PubMed  Google Scholar 

  33. Lee J, Hong SW, Rhee EJ, Lee WY. GLP-1 receptor agonist and non-alcoholic fatty liver disease. Diabetes Metab J. 2012;36(4):262–7.

    Article  CAS  Google Scholar 

  34. Bull MJ, Plummer NT. Part 1: The human gut microbiome in health and disease. Integr Med. 2014;13:17.

    Google Scholar 

  35. Raman M, Ahmed I, Gillevet PM, Probert CS, Ratcliffe NM, Smith S, Greenwood R, Sikaroodi M, Lam V, Crotty P, Bailey J. Fecal microbiome and volatile organic compound metabolome in obese humans with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 2013;11:868–75. https://doi.org/10.1016/j.cgh.2013.02.015.

    Article  CAS  PubMed  Google Scholar 

  36. Wong VW, Tse CH, Lam TT, Wong GL, Chim AM, Chu WC, Yeung DK, Law PT, Kwan HS, Yu J, Sung JJ. Molecular characterization of the fecal microbiota in patients with nonalcoholic steatohepatitis–a longitudinal study. PLoS ONE. 2013;8:e62885.

    Article  CAS  Google Scholar 

  37. Del Chierico F, Nobili V, Vernocchi P, Russo A, De Stefanis C, Gnani D, Furlanello C, Zandonà A, Paci P, Capuani G, Dallapiccola B. Gut microbiota profiling of pediatric nonalcoholic fatty liver disease and obese patients unveiled by an integrated meta-omics-based approach. Hepatology. 2017;65(2):451–64. https://doi.org/10.1002/hep.28572.

    Article  CAS  PubMed  Google Scholar 

  38. Silva HE, Teterina A, Comelli EM, Taibi A, Arendt BM, Fischer SE, Lou W, Allard JP. Nonalcoholic fatty liver disease is associated with dysbiosis independent of body mass index and insulin resistance. Sci Rep. 2018;8:1466. https://doi.org/10.1038/s41598-018-19753-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Wang B, Jiang X, Cao M, Ge J, Bao Q, Tang L, Chen Y, Li L. Altered fecal microbiota correlates with liver biochemistry in nonobese patients with non-alcoholic fatty liver disease. Sci Rep. 2016. https://doi.org/10.1038/srep32002.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Loomba R, Seguritan V, Li W, Long T, Klitgord N, Bhatt A, Dulai PS, Caussy C, Bettencourt R, Highlander SK, Jones MB. Gut microbiome-based metagenomic signature for non-invasive detection of advanced fibrosis in human nonalcoholic fatty liver disease. Cell Metab. 2017;25:1054–62. https://doi.org/10.1016/j.cmet.2017.04.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Ponziani FR, Bhoori S, Castelli C, Putignani L, Rivoltini L, Del Chierico F, Sanguinetti M, Morelli D, Paroni Sterbini F, Petito V, Reddel S. Hepatocellular carcinoma is associated with gut microbiota profile and inflammation in non-alcoholic fatty liver disease. Hepatology. 2018;69:107–20. https://doi.org/10.1002/hep.30036.

    Article  CAS  PubMed  Google Scholar 

  42. Bajaj JS, Fagan A, Sikaroodi M, White MB, Sterling RK, Gilles H, Heuman D, Stravitz RT, Matherly SC, Siddiqui MS, Puri P. Liver transplant modulates gut microbial dysbiosis and cognitive function in cirrhosis. Liver Transpl. 2017;23(7):907–14. https://doi.org/10.1002/lt.24754.

    Article  PubMed  Google Scholar 

  43. Yuan J, Chen C, Cui J, Lu J, Yan C, Wei X, Zhao X, Li N, Li S, Xue G, Cheng W. Fatty liver disease caused by high-alcohol-producing Klebsiella pneumoniae. Cell Metab. 2019. https://doi.org/10.1016/j.cmet.2019.08.018.

    Article  PubMed  Google Scholar 

  44. Jha R, Berrocoso JF. Dietary fiber and protein fermentation in the intestine of swine and their interactive effects on gut health and on the environment: a review. Anim Feed Sci Technol. 2016;212:18–26. https://doi.org/10.1016/j.anifeedsci.2015.12.002.

    Article  CAS  Google Scholar 

  45. **n J, Zeng D, Wang H, Ni X, Yi D, Pan K, **g B. Preventing non-alcoholic fatty liver disease through Lactobacillus johnsonii BS15 by attenuating inflammation and mitochondrial injury and improving gut environment in obese mice. Appl Microbiol Biotechnol. 2014;c98:6817–29. https://doi.org/10.1007/s00253-014-5752-1.

    Article  CAS  Google Scholar 

  46. Jones ML, Martoni CJ, Prakash S. Cholesterol lowering and inhibition of sterol absorption by Lactobacillus reuteri NCIMB 30242: a randomized controlled trial. Eur J Clin Nutr. 2012;22:699–711. https://doi.org/10.1038/ejcn.2012.126.

    Article  CAS  Google Scholar 

  47. Fuentes MC, Lajo T, Carrión JM, Cuñé J. Cholesterol-lowering efficacy of Lactobacillus plantarum CECT 7527, 7528 and 7529 in hypercholesterolaemic adults. Br J Nutr. 2013;109:1866–72. https://doi.org/10.1017/S000711451200373X.

    Article  CAS  PubMed  Google Scholar 

  48. Hadi A, Mohammadi H, Miraghajani M, Ghaedi E. Efficacy of synbiotic supplementation in patients with nonalcoholic fatty liver disease: a systematic review and meta-analysis of clinical trials: synbiotic supplementation and NAFLD. Crit Rev Food Sci Nutr. 2008. https://doi.org/10.1080/10408398.2018.1458021.

    Article  Google Scholar 

  49. Russo F, Chimienti G, Riezzo G, Pepe G, Petrosillo G, Chiloiro M, Marconi E. Inulin-enriched pasta affects lipid profile and Lp (a) concentrations in Italian young healthy male volunteers. Eur J Nutr. 2008;47:453–9. https://doi.org/10.1007/s00394-008-0748-1.

    Article  CAS  PubMed  Google Scholar 

  50. Van Loo J, Cummings J, Delzenne N, Englyst H, Franck A, Hopkins M, Kok N, Macfarlane G, Newton D, Quigley M, Roberfroid M. Functional food properties of non-digestible oligosaccharides: a consensus report from the ENDO project (DGXII AIRII-CT94-1095). Br J Nutr. 1999;81:121–32. https://doi.org/10.1017/S0007114599000252.

    Article  PubMed  Google Scholar 

  51. Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, Williams R. Fecal microbiota transplant from a rational stool donor improves hepatic encephalopathy: a randomized clinical trial. J Hepatol. 2017;66(6):1727–38.

    Article  CAS  Google Scholar 

  52. Sharpton SR, Ajmera V, Loomba R. Emerging role of the gut microbiome in nonalcoholic fatty liver disease: from composition to function. Clin Gastroenterol Hepatol. 2018;17:296–306. https://doi.org/10.1016/j.cgh.2018.08.065.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Suez J, Zmora N, Zilberman-Schapira G, Mor U, Dori-Bachash M, Bashiardes S, Zur M, Regev-Lehavi D, Brik RB, Federici S, Horn M. Post-antibiotic gut mucosal microbiome reconstitution is impaired by probiotics and improved by autologous FMT. Cell. 2018;174:1406–23. https://doi.org/10.1016/j.cell.2018.08.047.

    Article  CAS  PubMed  Google Scholar 

  54. Delaune V, Orci LA, Lacotte S, Peloso A, Schrenzel J, Lazarevic V, Toso C. Fecal microbiota transplantation: a promising strategy in preventing the progression of non-alcoholic steatohepatitis and improving the anti-cancer immune response. Expert Opin Biol Ther. 2018;18:1061–71. https://doi.org/10.1080/14712598.2018.1518424.

    Article  PubMed  Google Scholar 

  55. Schneider KM, Wirtz TH, Kroy D, Albers S, Neumann UP, Strowig T, Sellge G, Trautwein C. Successful fecal microbiota transplantation in a patient with severe complicated Clostridium difficile infection after liver transplantation. Case Rep Gastroenterol. 2018;12:76–84. https://doi.org/10.1159/000481937.

    Article  PubMed  PubMed Central  Google Scholar 

  56. Leylabadlo HE, Ghotaslou R, Kafil HS, Feizabadi MM, Moaddab SY, Farajnia S, Sheykhsaran E, Sanaie S, Shanehbandi D, Baghi HB. Non-alcoholic fatty liver diseases: from role of gut microbiota to microbial-based therapies. Eur J Clin Microbiol Infect Dis. 2020;39(4):613–27.

    Article  Google Scholar 

  57. Moreira GV, Azevedo FF, Ribeiro LM, Santos A, Guadagnini D, Gama P, Liberti EA, Saad MJ, Carvalho CR. Liraglutide modulates gut microbiota and reduces NAFLD in obese mice. J Nutr Biochem. 2018;62:143–54. https://doi.org/10.1016/j.jnutbio.2018.07.009.

    Article  CAS  PubMed  Google Scholar 

  58. Angelberger S, Reinisch W, Makristathis A, Lichtenberger C, Dejaco C, Papay P, Novacek G, Trauner M, Loy A, Berry D. Temporal bacterial community dynamics vary among ulcerative colitis patients after fecal microbiota transplantation. Am J Gastroenterol. 2013;108:1620. https://doi.org/10.1038/ajg.2013.257.

    Article  CAS  PubMed  Google Scholar 

  59. Russell GH, Kaplan JL, Youngster I, Baril-Dore M, Schindelar L, Hohmann E, Winter HS. Fecal transplant for recurrent Clostridium difficile infection in children with and without inflammatory bowel disease. J Pediatr Gastroenterol Nutr. 2014;58:588–92. https://doi.org/10.1097/MPG.0000000000000283.

    Article  CAS  PubMed  Google Scholar 

  60. Wang S, Xu M, Wang W, Cao X, Piao M, Khan S, Yan F, Cao H, Wang B. Systematic review: adverse events of fecal microbiota transplantation. PLoS ONE. 2016. https://doi.org/10.1371/journal.pone.0161174.

    Article  PubMed  PubMed Central  Google Scholar 

  61. Baxter M, Colville A. Adverse events in fecal microbiota transplant: a review of the literature. J Hosp Infect. 2016;92:117–22. https://doi.org/10.1016/j.jhin.2015.10.024.

    Article  CAS  PubMed  Google Scholar 

  62. Craven L, Rahman A, Parvathy SN, Beaton M, Silverman J, Qumosani K, Hramiak I, Hegele R, Joy T, Meddings J, Urquhart B. Allogenic fecal microbiota transplantation in patients with nonalcoholic fatty liver disease improves abnormal small intestinal permeability: a randomized control trial. Am J Gastroenterol. 2020;115(7):105510–65. https://doi.org/10.1430/ajg.0000000000000661.

    Article  Google Scholar 

  63. Witjes JJ, Smits LP, Pekmez CT, Prodan A, Meijnikman AS, Troelstra MA, Bouter KE, Herrema H, Levin E, Holleboom AG, Winkelmeijer M. Donor fecal microbiota transplantation alters gut microbiota and metabolites in obese individuals with steatohepatitis. Hepatol Commun. 2020;4(11):1578–90. https://doi.org/10.1002/hep4.1601.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Lechner S, Yee M, Limketkai BN, Pham EA. Fecal microbiota transplantation for chronic liver diseases: current understanding and future direction. Dig Dis Sci. 2020;65(3):897–905.

    Article  CAS  Google Scholar 

  65. Bajaj JS, Salzman NH, Acharya C, Sterling RK, White MB, Gavis EA, Fagan A, Hayward M, Holtz ML, Matherly S, Lee H. Fecal microbial transplant capsules are safe in hepatic encephalopathy: a phase 1, randomized, placebo-controlled trial. Hepatology. 2019;70(5):1690–703.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge the Chitkara University for providing facilities and continuous support for writing this review article.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: SA, OB and PK: literature review: MG, NT and OB: review and editing: AK and TGS. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Onkar Bedi.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Consent for publication

All are aware of its submission to the Journal and its publication.

Ethics approval and consent to participate

There are no mandatory ethics documents associated with this mini review report.

Additional information

Responsible Editor: John Di Battista.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gupta, M., Krishan, P., Kaur, A. et al. Mechanistic and physiological approaches of fecal microbiota transplantation in the management of NAFLD. Inflamm. Res. 70, 765–776 (2021). https://doi.org/10.1007/s00011-021-01480-z

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00011-021-01480-z

Keywords

Navigation