Log in

Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise

  • Original Article
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

Ultrapurified Photosystem II complexes crystalize as uniform microcrystals (PSIIX) of unprecedented homogeneity that allow observation of details previously unachievable, including the longest sustained oscillations of flash-induced O2 yield over > 200 flashes and a novel period-4.7 water oxidation cycle. We provide new evidence for a molecular-based mechanism for PSII-cyclic electron flow that accounts for switching from linear to cyclic electron flow within PSII as the downstream PQ/PQH2 pool reduces in response to metabolic needs and environmental input. The model is supported by flash oximetry of PSIIX as the LEF/CEF switch occurs, Fourier analysis of O2 flash yields, and Joliot-Kok modeling. The LEF/CEF switch rebalances the ratio of reductant energy (PQH2) to proton gradient energy (H+o/H+i) created by PSII photochemistry. Central to this model is the requirement for a regulatory site (QC) with two redox states in equilibrium with the dissociable secondary electron carrier site QB. Both sites are controlled by electrons and protons. Our evidence fits historical LEF models wherein light-driven water oxidation delivers electrons (from QA) and stromal protons through QB to generate plastoquinol, the terminal product of PSII-LEF in vivo. The new insight is the essential regulatory role of QC. This site senses both the proton gradient (H+o/H+i) and the PQ pool redox poise via e/H+ equilibration with QB. This information directs switching to CEF upon population of the protonated semiquinone in the Qc site (QH+)C, while the WOC is in the reducible S2 or S3 states. Subsequent photochemical primary charge separation (P+QA) forms no (QH2)B, but instead undergoes two-electron backward transition in which the QC protons are pumped into the lumen, while the electrons return to the WOC forming (S1/S2). PSII-CEF enables production of additional ATP needed to power cellular processes including the terminal carboxylation reaction and in some cases PSI-dependent CEF.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme. 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Scheme. 2

Similar content being viewed by others

Data availability

All supporting data is available from C.G. or G.C.D. on request.

References

  • Amesz J (1964) Spectrophotometric evidence for the participation of a quinone in photosynthesis of intact blue-green algae. Biochim et Biophys Acta (BBA) Spec Sec Biophys Subj 79(2):257–265

    CAS  Google Scholar 

  • Ananyev G, Dismukes GC (2005) How fast can Photosystem II split water? kinetic performance at high and low frequencies. Photosynth Res 84(1–3):355–365. https://doi.org/10.1007/s11120-004-7081-1

    Article  CAS  PubMed  Google Scholar 

  • Ananyev G, Carrieri D, Dismukes GC (2008) Optimizing metabolic capacity and flux through environmental cues to maximize hydrogen production by cyanobacterium arthrospira maxima. Appl Environ Microbiol 74(19):6102–6113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ananyev G, Gates C, Dismukes GC (2017a) The multiplicity of roles for (Bi)carbonate in photosystem II operation in the hypercarbonate-requiring cyanobacterium arthrospira maxima. Photosynthetica 56:217–228

    Article  Google Scholar 

  • Ananyev G, Gates C, Kaplan A (1858b) Dismukes GC (2017b) Photosystem II-cyclic electron flow powers exceptional photoprotection and record growth in the microalga Chlorella ohadii. Biochim et Biophys Acta (BBA)-Bioenerg 11:873–883. https://doi.org/10.1016/j.bbabio.2017b.07.001

    Article  Google Scholar 

  • Ananyev G, Gates C, Dismukes GC (2016) The oxygen quantum yield in diverse algae and cyanobacteria is controlled by partitioning of flux between linear and cyclic electron flow within photosystem II. Biochem Biophys Acta 1857:1380–1391

    CAS  PubMed  Google Scholar 

  • Ananyev G, Roy-Chowdhury S, Gates C, Fromme P, Dismukes GC (2019) The catalytic cycle of water oxidation in crystallized photosystem II complexes: performance and requirements for formation of intermediates. ACS Catal 9(2):1396–1407. https://doi.org/10.1021/acscatal.8b04513

    Article  CAS  Google Scholar 

  • Belyaeva NE, Schmitt F-J, Steffen R, Paschenko VZ, Riznichenko GY, Chemeris YK, Renger G, Rubin AB (2008) PS II model-based simulations of single turnover flash-induced transients of fluorescence yield monitored within the time domain of 100 ns–10 s on dark-adapted Chlorella pyrenoidosa cells. Photosynth Res 98(1):105–119. https://doi.org/10.1007/s11120-008-9374-2

    Article  CAS  PubMed  Google Scholar 

  • Belyaeva NE, Bulychev AA, Riznichenko GY, Rubin AB (2019) Analyzing both the fast and the slow phases of chlorophyll a fluorescence and P700 absorbance changes in dark-adapted and preilluminated pea leaves using a Thylakoid Membrane model. Photosynth Res 140(1):1–19. https://doi.org/10.1007/s11120-019-00627-8

    Article  CAS  PubMed  Google Scholar 

  • Bouges-Bocquet B (1980) Kinetic models for the electron donors of photosystem II of photosynthesis. Biochim Biophys Acta 594(2–3):85–103

    Article  CAS  PubMed  Google Scholar 

  • Causmaecker SD, Douglass JS, Fantuzzi A, Nitschke W, Rutherford AW (2019) Energetics of the exchangeable quinone, Q<sub>B</sub>, in Photosystem II. Proc Natl Acad Sci 116(39):19458–19463. https://doi.org/10.1073/pnas.1910675116

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Coe J, Kupitz C, Basu S, Conrad CE, Roy-Chowdhury S, Fromme R, Fromme P (2015) Chapter twenty-two-crystallization of photosystem II for time-resolved structural studies using an X-ray free electron laser. Methods Enzymol 557:459–482

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Crane F, Ehrlich B, Kegel L (1960) Plastoquinone reduction in illuminated chloroplasts. Biochem Biophys Res Commun 3(1):37–40

    Article  CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2007) Time-resolved X-ray spectroscopy leads to an extension of the classical S-state cycle model of photosynthetic oxygen evolution. Photosynth Res 92(3):327–343. https://doi.org/10.1007/s11120-007-9141-9

    Article  CAS  PubMed  Google Scholar 

  • Dismukes GC, Siderer Y (1981) Intermediates of a polynuclear manganese center involved in photosynthetic oxidation of water. Proc Natl Acad Sci 78(1):274–278. https://doi.org/10.1073/pnas.78.1.274

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Falkowski P, Fujita Y, Ley A, Mauzerall D (1986) Evidence for cyclic electron flow around photosystem II in Chlorella pyrenoidosa. Plant Physiol 81(1):310

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Feikema WO, Marosvolgyi MA, Lavaud J, van Gorkom HJ (2006) Cyclic electron transfer in photosystem II in the marine diatom Phaeodactylum tricornutum. BBA-Bioenergetics 1757(7):829–834. https://doi.org/10.1016/j.bbabio.2006.06.003

    Article  CAS  Google Scholar 

  • Gates C, Ananyev G, Dismukes GC (2016) The strontium inorganic mutant of the water oxidizing center (CaMn4O5) of PSII improves WOC efficiency but slows electron flux through the terminal acceptors. Biochim et Biophys Acta (BBA)-Bioenerg 1857(9):1550–1560. https://doi.org/10.1016/j.bbabio.2016.06.004

    Article  CAS  Google Scholar 

  • Gates C, Ananyev G, Roy-Chowdhury S, Cullinane B, Miller M, Fromme P, Dismukes GC (2022) Why did nature choose manganese over cobalt to make oxygen photosynthetically on the earth? J Phys Chem B 126(17):3257–3268

    Article  CAS  PubMed  Google Scholar 

  • Guskov A, Kern J, Gabdulkhakov A, Broser M, Zouni A, Saenger W (2009) Cyanobacterial Photosystem II at 29-angstrom resolution and the role of quinones, lipids, channels and chloride. Nat Struct Mol Biol 16(3):334–342. https://doi.org/10.1038/nsmb.1559

    Article  CAS  PubMed  Google Scholar 

  • Hasegawa K, Noguchi T (2014) Molecular interactions of the quinone electron acceptors QA, QB, and QC in photosystem II as studied by the fragment molecular orbital method. Photosynth Res 120(1):113–123

    Article  CAS  PubMed  Google Scholar 

  • Huang J-Y, Chiu Y-F, Ortega JM, Wang H-T, Tseng T-S, Ke S-C, Roncel M, Chu H-A (2016) Mutations of cytochrome b 559 and PsbJ on and near the QC site in Photosystem II influence the regulation of short-term light response and photosynthetic growth of the cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 55(15):2214–2226

    Article  CAS  PubMed  Google Scholar 

  • Jenson DL, Barry BA (2009) Proton-coupled electron transfer in photosystem II: proton inventory of a redox active tyrosine. J Am Chem Soc 131(30):10567–10573. https://doi.org/10.1021/ja902896e

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Joliot P, Joliot A (1968) A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochim et Biophys Acta (BBA)-Bioenerg 153(3):625–634

    Article  CAS  Google Scholar 

  • Joliot P, Barbieri G, Chabaud R (1969) A new model of photochemical centers in system-2. Photochem Photobiol 10(5):309–329

    Article  CAS  Google Scholar 

  • Kato Y, Akita F, Nakajima Y, Suga M, Umena Y, Shen J-R, Noguchi T (2018) Fourier transform infrared analysis of the S-state cycle of water oxidation in the microcrystals of photosystem II. J Phys Chem Lett 9(9):2121–2126

    Article  CAS  PubMed  Google Scholar 

  • Kedem I, Milrad Y, Kaplan A, Yacoby I (2021) Juggling lightning: how Chlorella ohadii handles extreme energy inputs without damage. Photosynth Res 147(3):329–344

    Article  CAS  PubMed  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic oxygen evolution part 1: a linear 4 step mechanism. Photochem Photobiol 11(6):457–475. https://doi.org/10.1111/j.1751-1097.1970.tb06017.x

    Article  CAS  PubMed  Google Scholar 

  • Krivanek R, Kern J, Zouni A, Dau H, Haumann M (2007) Spare quinones in the QB cavity of crystallized photosystem II from Thermosynechococcus elongatus. Biochim et Biophys Acta (BBA)-Bioenerg 1767(6):520–527

    Article  CAS  Google Scholar 

  • Kupitz C, Basu S, Grotjohann I, Fromme R, Zatsepin NA, Rendek KN, Hunter MS, Shoeman RL, White TA, Wang D (2014a) Serial time-resolved crystallography of photosystem II using a femtosecond X-ray laser. Nature 513(7517):261–265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kupitz C, Grotjohann I, Conrad CE, Roy-Chowdhury S, Fromme R, Fromme P (2014b) Microcrystallization techniques for serial femtosecond crystallography using photosystem II from Thermosynechococcus elongatus as a model system. Phil Trans R Soc B 369(1647):20130316

    Article  PubMed  PubMed Central  Google Scholar 

  • Laisk A, Oja V (2018) Kinetics of photosystem II electron transport: a mathematical analysis based on chlorophyll fluorescence induction. Photosynth Res 136(1):63–82. https://doi.org/10.1007/s11120-017-0439-y

    Article  CAS  PubMed  Google Scholar 

  • Lambreva MD, Russo D, Polticelli F, Scognamiglio V, Antonacci A, Zobnina V, Campi G, Rea G (2014) Structure/function/dynamics of photosystem II plastoquinone binding sites. Curr Protein Pept Sci 15(4):285–295

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lavergne J, Junge W (1993) Proton release during the redox cycle of the water oxidase. Photosynth Res 38(3):279–296. https://doi.org/10.1007/bf00046752

    Article  CAS  PubMed  Google Scholar 

  • Lazár D, Jablonský J (2009) On the approaches applied in formulation of a kinetic model of photosystem II: different approaches lead to different simulations of the chlorophyll a fluorescence transients. J Theor Biol 257(2):260–269

    Article  PubMed  Google Scholar 

  • Mani K, Zournas A, Dismukes GC (2022) Bridging the gap between Kok-type and kinetic models of photosynthetic electron transport within Photosystem II. Photosynth Res 151(1):83–102. https://doi.org/10.1007/s11120-021-00868-6

    Article  CAS  PubMed  Google Scholar 

  • Manoj KM, Gideon DA, Parashar A, Nirusimhan V, Annadurai P, Jacob VD, Manekkathodi A (2021) Validating the predictions of murburn model for oxygenic photosynthesis: Analyses of ligand-binding to protein complexes and cross-system comparisons. J Biomol Struct Dyn. https://doi.org/10.1080/07391102.2021.1953607

    Article  PubMed  Google Scholar 

  • Meunier PC (1993) Oxygen evolution by photosystem II: the contribution of backward transitions to the anomalous behaviour of double-hits revealed by a new analysis method. Photosynth Res 36(2):111–118

    Article  CAS  PubMed  Google Scholar 

  • Meunier P, Burnap R (1996) Improved 5-step modeling of the Photosystem II S-state mechanism in cyanobacteria. Photosynth Res 47(1):61–76

    Article  CAS  PubMed  Google Scholar 

  • Oja V, Laisk A (2020) Time-and reduction-dependent rise of photosystem II fluorescence during microseconds-long inductions in leaves. Photosynth Res 145(3):209–225

    Article  CAS  PubMed  Google Scholar 

  • Pham LV, Messinger J (2014) Electrochemically produced hydrogen peroxide affects Joliot-type oxygen-evolution measurements of photosystem II. Biochim et Biophys Acta (BBA)-Bioenerg 1837(9):1411–1416. https://doi.org/10.1016/j.bbabio.2014.01.013

    Article  CAS  Google Scholar 

  • Pham LV, Messinger J (2016) Probing S-state advancements and recombination pathways in photosystem II with a global fit program for flash-induced oxygen evolution pattern. Biochim et Biophys Acta (BBA)-Bioenerg 1857(6):848–859. https://doi.org/10.1016/j.bbabio.2016.03.013

    Article  CAS  Google Scholar 

  • Pham LV, Janna Olmos JD, Chernev P, Kargul J, Messinger J (2019) Unequal misses during the flash-induced advancement of photosystem II: effects of the S state and acceptor side cycles. Photosynth Res 139(1):93–106

    Article  CAS  PubMed  Google Scholar 

  • Prasil O, Kolber Z, Berry J, Falkowski P (1996) Cyclic electron flow around photosystem II in vivo. Photosynth Res 48(3):395–410

    Article  CAS  PubMed  Google Scholar 

  • Rappaport F, Guergova-Kuras M, Nixon PJ, Diner BA, Lavergne J (2002) Kinetics and pathways of charge recombination in photosystem II. Biochemistry 41(26):8518–8527

    Article  CAS  PubMed  Google Scholar 

  • Robinson HH, Crofts AR (1983) Kinetics of the oxidation—reduction reactions of the photosystem II quinone acceptor complex, and the pathway for deactivation. FEBS Lett 153(1):221–226

    Article  CAS  Google Scholar 

  • Satoh K, Koike H, Ichimura T, Katoh S (1992) Binding affinities of benzoquinones to the QB site of Photosystem II in Synechococcus oxygen-evolving preparation. Biochim et Biophys Acta (BBA)-Bioenerg 1102(1):45–52. https://doi.org/10.1016/0005-2728(92)90063-8

    Article  CAS  Google Scholar 

  • Schatz GH, Brock H, Holzwarth AR (1988) Kinetic and energetic model for the primary processes in photosystem II. Biophys J 54(3):397–405. https://doi.org/10.1016/S0006-3495(88)82973-4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkarev V (1996) Binary oscillations in the Kok model of oxygen evolution in oxygenic photosynthesis. Photosynth Res 48(3):411–417. https://doi.org/10.1007/BF00029473

    Article  CAS  PubMed  Google Scholar 

  • Shinkarev VP (2003) Oxygen evolution in photosynthesis: simple analytical solution for the Kok model. Biophys J 85(1):435–441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinkarev V (2005a) Flash-induced oxygen evolution in photosynthesis: simple solution for the extended s-state model that includes misses, double hits, inactivation, and backwards transitions. Biophys J 88:412–421

    Article  CAS  PubMed  Google Scholar 

  • Shinkarev VP (2005b) Flash-induced oxygen evolution and other oscillation processes in Photosystem II. In: Wydrzynski T, Satoh K (eds) Photosystem II: The Water/Plastoquinone Oxido-Reductase In Photosynthesis. Klewer Academic Publishers, The Netherlands

    Google Scholar 

  • Shinkarev VP, Wraight CA (1993a) Kinetic factors in the bicycle model of oxygen evolution by Photosystem II. Photosynth Res 38(3):315–321. https://doi.org/10.1007/BF00046756

    Article  CAS  PubMed  Google Scholar 

  • Shinkarev VP, Wraight CA (1993b) Oxygen evolution in photosynthesis: from unicycle to bicycle. Proc Natl Acad Sci USA 90(5):1834–1838

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shinopoulos KE, Brudvig GW (2012) Cytochrome b 559 and cyclic electron transfer within photosystem II. Biochim et Biophys Acta (BBA)-Bioenerg 1817(1):66–75

    Article  CAS  Google Scholar 

  • Steffen M (1990) A simple method for monotonic interpolation in one dimension. Astron Astrophys 239:443

    Google Scholar 

  • Swarztrauber PN (1982) Vectorizing the FFTs. In: Rodrigue G (ed) Parallel Computations". Academic Press, Cambridge

    Google Scholar 

  • Takagi D, Ifuku K, Nishimura T, Miyake C (2019) Antimycin A inhibits cytochrome b559-mediated cyclic electron flow within photosystem II. Photosynth Res 139(1):487–498

    Article  CAS  PubMed  Google Scholar 

  • Vass I (2012) Molecular mechanisms of photodamage in the Photosystem II complex. Biochim et Biophys Acta (BBA)-Bioenerg 1817(1):209–217

    Article  CAS  Google Scholar 

  • Vass I, Cser K (2009) Janus-faced charge recombinations in photosystem II photoinhibition. Trends Plant Sci 14(4):200–205

    Article  CAS  PubMed  Google Scholar 

  • Vinyard DJ, Zachary CE, Ananyev G (1827) Dismukes GC (2013) Thermodynamically accurate modeling of the catalytic cycle of photosynthetic oxygen evolution: a mathematical solution to asymmetric Markov chains. Biochim Biophys Acta 7:861–868. https://doi.org/10.1016/j.bbabio.2013.04.008

    Article  CAS  Google Scholar 

  • Wraight C (1979) Electron acceptors of bacterial photosynthetic reaction centers II. H+ binding coupled to secondary electron transfer in the quinone acceptor complex. Biochim et Biophys Acta (BBA)-Bioenerg 548(2):309–327

    Article  CAS  Google Scholar 

  • Yadav DK, Prasad A, Kruk J, Pospíšil P (2014) Evidence for the involvement of loosely bound plastosemiquinones in superoxide anion radical production in photosystem II. PLoS ONE 9(12):e115466. https://doi.org/10.1371/journal.pone.0115466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yanykin DV, Khorobrykh AA, Khorobrykh SA, Klimov VV (2010) Photoconsumption of molecular oxygen on both donor and acceptor sides of photosystem II in Mn-depleted subchloroplast membrane fragments. Biochim et Biophys Acta (BBA)-Bioenerg 1797(4):516–523

    Article  CAS  Google Scholar 

  • Yanykin D, Khorobrykh A, Terentyev V, Klimov V (2017) Two pathways of photoproduction of organic hydroperoxides on the donor side of photosystem 2 in subchloroplast membrane fragments. Photosynth Res 133(1):129–138

    Article  CAS  PubMed  Google Scholar 

  • Yao M, Liu Y, Fei L, Zhou Y, Wang F, Chen J (2018) Self-adaptable quinone–quinol exchange mechanism of photosystem II. J Phys Chem B 122(46):10478–10489

    Article  CAS  PubMed  Google Scholar 

  • Zhu X-G, Baker NR, Ort DR, Long SP (2005) Chlorophyll a fluorescence induction kinetics in leaves predicted from a model describing each discrete step of excitation energy and electron transfer associated with photosystem II. Planta 223(1):114–133

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was funded by the Department of Energy, Basic Energy Sciences, Grant DE-FG02-10ER16195 (to G.C.D. and G.A.) and the NSF Science and Technology BioXFEL center award 1231306 (to P.F.).

Funding

Basic Energy Sciences, DE-FG02-10ER16195,G. Charles Dismukes,BioXFEL Science and Technology Center, 1231306, Petra Fromme

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Charles Dismukes.

Additional information

This article is dedicated to the memory of Professor Kenneth Sauer who made important contributions to understanding of the photosystems and the Z-scheme.

Also, we had a dedication to another friend and mentor to the authors, Prof. Ron Pace, who also passed away during the production of this paper and who served as an inspiration to the work. The dedication read. This work is dedicated to the memory of Professor Ronald Pace whose dogged questioning and insightful ideas inspired us to ask why, to delve deeper, and to always treat historical interpretations as conditional models.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 581 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gates, C., Ananyev, G., Roy-Chowdhury, S. et al. Regulation of light energy conversion between linear and cyclic electron flow within photosystem II controlled by the plastoquinone/quinol redox poise. Photosynth Res 156, 113–128 (2023). https://doi.org/10.1007/s11120-022-00985-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-022-00985-w

Keywords

Navigation