Log in

Time-resolved X-ray spectroscopy leads to an extension of the classical S-state cycle model of photosynthetic oxygen evolution

  • Original paper
  • Published:
Photosynthesis Research Aims and scope Submit manuscript

Abstract

In oxygenic photosynthesis, a complete water oxidation cycle requires absorption of four photons by the chlorophylls of photosystem II (PSII). The photons can be provided successively by applying short flashes of light. Already in 1970, Kok and coworkers [Photochem Photobiol 11:457–475, 1970] developed a basic model to explain the flash-number dependence of O2 formation. The third flash applied to dark-adapted PSII induces the S3→S4⇒S0 transition, which is coupled to dioxygen formation at a protein-bound Mn4Ca complex. The sequence of events leading to dioxygen formation and the role of Kok’s enigmatic S4-state are only incompletely understood. Recently we have shown by time-resolved X-ray spectroscopy that in the S3⇒S0 transition an interesting intermediate is formed, prior to the onset of O–O bond formation [Haumann et al. Science 310:1019–1021, 2005]. The experimental results of the time-resolved X-ray experiments are discussed. The identity of the reaction intermediate is considered and the question is addressed how the novel intermediate is related to the S4-state proposed in 1970 by Bessel Kok. This leads us to an extension of the classical S-state cycle towards a basic model which describes sequence and interplay of electron and proton abstraction events at the donor side of PSII [Dau and Haumann, Science 312:1471–1472, 2006].

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Abbreviations

Chl:

chlorophyll

EPR:

electron paramagnetic resonance

EXAFS:

extended X-ray absorption fine-structure

OEC:

oxygen-evolving complex

PSII:

photosystem II

P680:

primary chlorophyll donor in PSII

Pheo:

specific pheophytin acting as the primary electron acceptor in PSII

Q:

‘quencher’ of PSII fluorescence and electron acceptor in PSII

QA :

primary quinone acceptor in PSII

QB :

secondary quinone acceptor in PSII

YZ :

Tyr 160/161 of the D1 protein of PSII

Y •+Z :

oxidized form of YZ

XANES:

X-ray absorption near-edge structure

XAS:

X-ray absorption spectroscopy

References

  • Ahlbrink R, Haumann M, Cherepanov D, Boegershausen O, Mulkidjanian A, Junge W (1998) Function of tyrosine-Z in water oxidation by photosystem II: electrostatical promotor instead of hydrogen abstractor. Biochemistry 37:1131–1142

    Article  PubMed  CAS  Google Scholar 

  • Ayougou K, Bill E, Charnick JM, Garner CD, Mandon D, Trautwein AX, Weiss R, Winkler H (1995) Characterization of an oxo(porphyrinato)manganese(IV) complex by x-ray absorption spectroscopy. Angew Chem Int Ed 34:343–346

    Article  CAS  Google Scholar 

  • Babcock GT, Blankenship RE, Sauer K (1976) Reaction kinetics for positive charge accumulation on the water side of chloroplast photosystem II. FEBS Lett 61:286–289

    Article  PubMed  CAS  Google Scholar 

  • Barra M, Haumann M, Loja P, Krivanek R, Grundmeier A, Dau H (2006) Intermediates in assembly by photoactivation after thermally accelerated disassembly of the manganese complex of photosynthetic water oxidation. Biochemistry 45:14523–14532

    Article  PubMed  CAS  Google Scholar 

  • Barry BA, Cooper IB, De Riso A, Brewer SH, Vu DM, Dyer RB (2006) Time-resolved vibrational spectroscopy detects protein-based intermediates in the photosynthetic oxygen-evolving cycle. Proc Natl Acad Sci USA 103:7288–7291

    Article  PubMed  CAS  Google Scholar 

  • Berthomieu C, Hienerwadel R (2005) Vibrational spectroscopy to study the properties of redox-active tyrosines in photosystem II and other proteins. Biochim Biophys Acta 1707:51–66

    Article  PubMed  CAS  Google Scholar 

  • Britt RD, Campbell KA, Peloquin JM, Gilchrist ML, Aznar CP, Dicus MM, Robblee J, Messinger J (2004) Recent pulsed EPR studies of the photosystem II oxygen-evolving complex: implications as to water oxidation mechanisms. Biochim Biophys Acta 1655:158–171

    Article  PubMed  CAS  Google Scholar 

  • Buchta J, Grabolle M, Dau H (2007) Photosynthetic dioxygen formation studied by time-resolved delayed fluorescence measurements – method, rationale, and results on the activation energy of dioxygen formation. Biochim Biophys Acta

  • Carrell G, Tyryshkin M, Dismukes C (2002) An evaluation of structural models for the photosynthetic water-oxidizing complex derived from spectroscopic and X-ray diffraction signatures. J Biol Inorg Chem 7:2–22

    Article  PubMed  CAS  Google Scholar 

  • Christen G, Renger G (1999) The role of hydrogen bonds for the multiphasic P680(+)* reduction by YZ in photosystem II with intact oxygen evolution capacity. Analysis of kinetic H/D isotope exchange effects. Biochemistry 38:2068–2077

    Article  PubMed  CAS  Google Scholar 

  • Chu HA, Hillier W, Law NA, Babcock GT (2001) Vibrational spectroscopy of the oxygen-evolving complex and of manganese model compounds. Biochim Biophys Acta 1503:69–82

    Article  PubMed  CAS  Google Scholar 

  • Cinco RM, Holman KLM, Robblee JH, Yano J, Pizarro SA, Bellacchio E, Sauer K, Yachandra VK (2002) Calcium EXAFS establishes the Mn-Ca cluster in the oxygen-evolving complex of photosystem II. Biochemistry 41:12928–12933

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Junge W (2004) Detection of an intermediate of photosynthetic water oxidation. Nature 430:480–483

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Debus RJ, Junge W (2004) Time-resolved oxygen production by PSII: chasing chemical intermediates. Biochim Biophys Acta 1655:184–194

    Article  PubMed  CAS  Google Scholar 

  • Clausen J, Junge W, Dau H, Haumann M (2005) Photosynthetic water oxidation at high O2 backpressure monitored by delayed chlorophyll fluorescence. Biochemistry 44:12775–12779

    Article  PubMed  CAS  Google Scholar 

  • Dau H (1994) Molecular mechanisms and quantitative models of variable photosystem II fluorescence. Photochem Photobiol 60:1–23

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2003) X-ray absorption spectroscopy to watch catalysis by metalloenzymes: status and perspectives discussed for the water-splitting manganese complex of photosynthesis. J Synchroton Rad 10:76–85

    Article  CAS  Google Scholar 

  • Dau H, Haumann M (2005) Considerations on the mechanism of photosynthetic water oxidation – dual role of oxo-bridges between Mn ions in (i) redox-potential maintenance and (ii) proton abstraction from substrate water. Photosynth Res 84:325–331

    Article  PubMed  CAS  Google Scholar 

  • Dau H, Haumann M (2006) Reaction cycle of photosynthetic water oxidation. Science 312:1471–1472

    CAS  Google Scholar 

  • Dau H, Sauer K (1991) Electric field effect on chlorophyll fluorescence and its relation to photosystem II charge separation reactions studied by a salt-jump technique. Biochim Biophys Acta 1098:49–60

    Article  CAS  Google Scholar 

  • Dau H, Sauer K (1992) Electric field effect on the picosecond fluorescence of photosystem II and its relation to the energetics and kinetics of primary charge separation. Biochim Biophys Acta 1102:91–106

    Article  CAS  Google Scholar 

  • Dau H, Andrews JC, Roelofs TA, Latimer MJ, Liang W, Yachandra VK, Sauer K, Klein MP (1995) Structural consequences of ammonia binding to the manganese center of the photosynthetic oxygen-evolving complex: an X-ray absorption spectroscopy study of isotropic and oriented photosystem II particles. Biochemistry 34:5274–5287

    Article  PubMed  CAS  Google Scholar 

  • Dau H, Dittmer J, Epple M, Hanss J, Kiss E, Rehder D, Schulzke C, Vilter H (1999) Bromine K-edge EXAFS studies of bromide binding to bromoperoxidase from Ascophyllum nodosum. FEBS Lett 457:237–240

    Article  PubMed  CAS  Google Scholar 

  • Dau H, Iuzzolino L, Dittmer J (2001) The tetra-manganese complex of photosystem II during its redox cycle: X-ray absorption results and mechanistic implications. Biochim Biophys Acta 1503:24–39

    Article  PubMed  CAS  Google Scholar 

  • Dau H, Liebisch P, Haumann M (2003) X-ray absorption spectroscopy to analyze nuclear geometry and electronic structure of biological metal centers – potential and questions examined with special focus on the tetra-nuclear manganese complex of oxygenic photosynthesis. Anal Bioanal Chem 376:562–583

    Article  PubMed  CAS  Google Scholar 

  • Dau H, Liebisch P, Haumann M (2004) The structure of the manganese complex of photosystem II in its dark-stable S1-state: EXAFS results in relation to recent crystallographic data. Phys Chem Chem Phys 6:4781–4792

    Article  CAS  Google Scholar 

  • Dau H, Liebisch P, Haumann M (2005) The manganese complex of oxygenic photosynthesis: conversion of five-coordinated Mn(III) to six-coordinated Mn(IV) in the S2-S3 transition is implied by XANES simulations. Phys Scripta T115:844–846

    Article  CAS  Google Scholar 

  • Debus RJ (1992) The manganese and calcium ions of photosynthetic oxygen evolution. Biochim Biophys Acta 1102:269–352

    Article  PubMed  CAS  Google Scholar 

  • Debus RJ (2001) Amino acid residues that modulate the properties of tyrosine Y(Z) and the manganese cluster in the water oxidizing complex of photosystem II. Biochim Biophys Acta 1503:164–186

    Article  PubMed  CAS  Google Scholar 

  • Dekker JP, Plijter JJ, Ouwehand L, van Gorkom HJ (1984) Kinetics of manganese redox transitions in the oxygen evolving apparatus of photosynthesis. Biochim Biophys Acta 767:176–179

    Article  CAS  Google Scholar 

  • De Paula JC, Innes JB, Brudvig GW (1985) Electron transfer in photosystem II at cryogenic temperatures. Biochemistry 24:8114–8120

    Article  PubMed  Google Scholar 

  • de Wijn R, van Gorkom HJ (2001) Kinetics of electron transfer from Q(a) to Q(b) in photosystem II. Biochemistry 40:11912–11922

    Article  PubMed  CAS  Google Scholar 

  • de Wijn R, Schrama T, van Gorkom HJ (2001) Secondary stabilization reactions and proton-coupled electron transport in photosystem II investigated by electroluminescence and fluorescence spectroscopy. Biochemistry 40:5821–5834

    Article  PubMed  CAS  Google Scholar 

  • Ferreira KN, Iverson TM, Maghlaoui K, Barber J, Iwata S (2004) Architecture of the photosynthetic oxygen-evolving center. Science 303:1831–1838

    Article  PubMed  CAS  Google Scholar 

  • Geijer P, Peterson S, Ahrling KA, Deak Z, Styring S (2001) Comparative studies of the S0 and S2 multiline electron paramagnetic resonance signals from the manganese cluster in Photosystem II. Biochim Biophys Acta 1503:83–95

    Article  PubMed  CAS  Google Scholar 

  • Grabolle M (2005) Die Donorseite des Photosystems II: Rekombinationsfluoreszenz- und Röntgenabsorptionsstudien. Thesis, FB Physik, Freie Univ. Berlin

  • Grabolle M, Dau H (2005) Energetics of primary and secondary electron transfer in photosystem II membrane particles of spinach revisited on basis of recombination-fluorescence measurements. Biochim Biophys Acta 1708:209–218

    Article  PubMed  CAS  Google Scholar 

  • Grabolle M, Haumann M, Müller C, Liebisch P, Dau H (2006) Rapid loss of structural motifs in the manganese complex of oxygenic photosynthesis by X-ray irradiation at 10–300 K. J Biol Chem 281:4580–4588

    Article  PubMed  CAS  Google Scholar 

  • Haumann M, Junge W (1994a) Extent and rate of proton release by photosynthetic water oxidation in thylakoids: electrostatic relaxation versus chemical production. Biochemistry 33:864–872

    Article  CAS  Google Scholar 

  • Haumann M, Junge W (1994b) The rates of proton uptake and electron transfer at the reducing side of photosystem II in thylakoids. FEBS Lett 347:45–50

    Article  CAS  Google Scholar 

  • Haumann M, Junge W (1996) Protons and charge indicators in oxygen evolution. In: Ort D, Yocum CF (eds) Oxygenic photosynthesis – the light reactions. Kluwer Academic Publ., Dordrecht, pp 165–192

    Google Scholar 

  • Haumann M, Bögershausen O, Cherepanov D, Ahlbrink R, Junge W (1997) Photosynthetic oxygen evolution: H/D isotope effects and the coupling between electron and proton transfer during the redox reactions at the oxidizing side of Photosystem II. Photosynth Res 51:193–208

    Article  CAS  Google Scholar 

  • Haumann M, Grabolle M, Neisius T, Dau H (2002a) The first room-temperature X-ray absorption spectra of higher oxidation states of the tetra-manganese complex of photosystem II. FEBS Lett 512:116–120

    Article  CAS  Google Scholar 

  • Haumann M, Pospisil P, Grabolle M, Müller C, Liebisch P, Sole VA, Neisius T, Dittmer J, Iuzzolino L, Dau H (2002b) First steps towards time-resolved BioXAS at room temperature: state transitions of the manganese complex of oxygenic photosynthesis. J Synchrotron Rad 9:304–308

    Article  CAS  Google Scholar 

  • Haumann M, Liebisch P, Müller C, Barra M, Grabolle M, Dau H (2005a) Photosynthetic O2 formation tracked by time-resolved X-ray experiments. Science 310:1019–1021

    Article  CAS  Google Scholar 

  • Haumann M, Müller C, Liebisch P, Iuzzolino L, Dittmer J, Grabolle M, Neisius T, Meyer-Klaucke W, Dau H (2005b) Structural and oxidation state changes of the photosystem II manganese complex in four transitions of the water oxidation cycle (S0→S1, S1→S2, S2→S3, S3,4→S0) characterized by X-ray absorption spectroscopy at 20 K as well as at room temperature. Biochemistry 44:1894–1908

    Article  CAS  Google Scholar 

  • Haumann M, Müller C, Liebisch P, Neisius T, Dau H (2005c) A novel BioXAS technique with sub-millisecond time resolution to track oxidation state and structural changes at biological metal centers. J Synchrotron Rad 12:35–44

    Article  CAS  Google Scholar 

  • Haumann M, Barra M, Loja P, Löscher S, Krivanek R, Grundmeier A, Andreasson LE, Dau H (2006) Bromide does not bind to the Mn4Ca complex in its S1 state in Cl-depleted and Br-reconstituted oxygen-evolving photosystem II: evidence from X-ray absorption spectroscopy at the Br K-edge. Biochemistry 45:13101–13107

    Article  PubMed  CAS  Google Scholar 

  • Hays AM, Vassiliev IR, Golbeck JH, Debus RJ (1998) Role of D1-His190 in proton-coupled electron transfer reactions in photosystem II: a chemical complementation study. Biochemistry 37:11352–11365

    Article  PubMed  CAS  Google Scholar 

  • Hays AM, Vassiliev IR, Golbeck JH, Debus RJ (1999) Role of D1-His190 in the proton-coupled oxidation of tyrosine YZ in manganese-depleted photosystem II. Biochemistry 38:11851–11865

    Article  PubMed  CAS  Google Scholar 

  • Hillier W, Wydrzynski T (2004) Substrate water interactions within the photosystem II oxygen evolving complex. Phys Chem Chem Phys 6:4882–4889

    Article  CAS  Google Scholar 

  • Ishikita H, Saenger W, Loll B, Biesiadka J, Knapp EW (2006) Energetics of a possible proton exit pathway for water oxidation in photosystem II. Biochemistry 45:2063–2071

    Article  PubMed  CAS  Google Scholar 

  • Iuzzolino L, Dittmer J, Dörner W, Meyer-Klaucke W, Dau H (1998) X-ray absorption spectroscopy on layered photosystem II membrane particles suggests manganese-centered oxidation of the oxygen-evolving complex for the S0–S1, S1–S2, and S2–S3 transitions of the water oxidation cycle. Biochemistry 37:17112–17119

    Article  PubMed  CAS  Google Scholar 

  • Joliot P, Joliot A (1968a) Analysis of the interactions between the two photosystems in isolated chloroplasts. Biochim Biophys Acta 153:635–652

    Article  CAS  Google Scholar 

  • Joliot P, Joliot A (1968b) A polarographic method for detection of oxygen production and reduction of Hill reagent by isolated chloroplasts. Biochim Biophys Acta 153:625–634

    Article  CAS  Google Scholar 

  • Junge W (1976) Flash kinetic spectrophotometry in the study of plant pigments. In: Goodwin TW (ed) Chemistry and biochemistry of plant pigments 2. Academic Press, London, pp 233–333

    Google Scholar 

  • Junge W, Clausen J (2006) Photosynthetic oxygen production. Science 312:1470

    Article  PubMed  CAS  Google Scholar 

  • Junge W, Haumann M, Ahlbrink R, Mulkidjanian A, Clausen J (2002) Electrostatics and proton transfer in photosynthetic water oxidation. Phil Trans R Soc London Ser B 357:1407–1418

    Article  CAS  Google Scholar 

  • Kamiya N, Shen J-R (2003) Crystal structure of oxygen-evolving photosystem II from Thermosynechococcus vulcanus at 3.7-Å resolution. Proc Natl Acad Sci USA 100:98–103

    Article  PubMed  CAS  Google Scholar 

  • Kern J, Loll B, Zouni A, Saenger W, Irrgang KD, Biesiadka J (2005) Cyanobacterial photosystem II at 3.2 A resolution – the plastoquinone binding pockets. Photosynth Res 84:153–159

    Article  PubMed  CAS  Google Scholar 

  • Kok B, Forbush B, McGloin M (1970) Cooperation of charges in photosynthetic O2 evolution – I. A linear four-step mechanism. Photochem Photobiol 11:457–475

    PubMed  CAS  Google Scholar 

  • Koningsberger DC, Mojet BL, van Dorssen GE, Ramaker DE (2000) XAFS spectroscopy; fundamental principles and data analysis. Top Catal 10:143–155

    Article  CAS  Google Scholar 

  • Krivanek R, Kern J, Zouni A, Dau H, Haumann M (2007) Spare quinones in the QB cavity of crystallized potosystem II from Thermosynechococcus elongatus, Biochim Biophys Acta (submitted)

  • Lavergne J (1987) Optical-difference spectra of the S-state transitions in the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 894:91–107

    Article  CAS  Google Scholar 

  • Lavergne J, Junge W (1993) Proton release during the redox cycle of the water oxidase. Photosynth Res 38:279–296

    Article  CAS  Google Scholar 

  • Liang W, Latimer MJ, Dau H, Roelofs TA, Yachandra VK, Sauer K, Klein MP (1994) Correlation between structure and magnetic spin state of the manganese cluster in the oxygen-evolving complex of photosystem II in the S2 state: determination by x-ray absorption spectroscopy. Biochemistry 33:4923–4932

    Article  PubMed  CAS  Google Scholar 

  • Loll B, Kern J, Saenger W, Zouni A, Biesiadka J (2005) Towards complete cofactor arrangement in the 3.0 A resolution structure of photosystem II. Nature 438:1040–1044

    Article  PubMed  CAS  Google Scholar 

  • Mamedov F, Sayre RT, Styring S (1998) Involvement of histidine 190 on the D1 protein in electron/proton transfer reactions on the donor side of photosystem II. Biochemistry 37:14245–14256

    Article  PubMed  CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2004) Structure-based mechanism of photosynthetic water oxidation. Phys Chem Chem Phys 6:4754–4763

    Article  CAS  Google Scholar 

  • McEvoy JP, Brudvig GW (2006) Water-splitting chemistry of photosystem II. Chem Rev 106:4455–4483

    Article  PubMed  CAS  Google Scholar 

  • Meinke C, Sole VA, Pospisil P, Dau H (2000) Does the structure of the water-oxidizing photosystem II-manganese complex at room temperature differ from its low-temperature structure? A comparative X-ray absorption study. Biochemistry 39:7033–7040

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Schroder WP, Renger G (1993) Structure-function relations in photosystem II. Effects of temperature and chaotropic agents on the period four oscillation of flash-induced oxygen evolution. Biochemistry 32:7658–7668

    Article  PubMed  CAS  Google Scholar 

  • Messinger J, Robblee JH, Bergmann U, Fernandez C, Glatzel P, Visser H, Cinco RM, McFarlane KL, Bellacchio E, Pizarro SA, Cramer SP, Sauer K, Klein MP, Yachandra VK (2001) Absence of Mn-centered oxidation in the S2->S3 transition: implications for the mechanism of photosynthetic water oxidation. J Am Chem Soc 123:7804–7820

    Article  PubMed  CAS  Google Scholar 

  • Müller C, Liebisch P, Barra M, Dau H, Haumann M (2005) The location of calcium in the manganese complex of oxygenic photosynthesis studied by X-ray absorption spectroscopy at the Ca K-edge. Phys Scripta T115:847–850

    Article  Google Scholar 

  • Nugent JHA (2001) Photosynthetic water oxidation (special issue). Biochim Biophys Acta 1503:1–259

    Article  PubMed  CAS  Google Scholar 

  • Ono T, Noguchi T, Inoue Y, Kusunoki M, Matsushita T, Oyanagi H (1992) X-ray-detection of the period-4 cycling of the manganese cluster in photosynthetic water oxidizing enzyme. Science 258:1335–1337

    Article  CAS  PubMed  Google Scholar 

  • Ort D, Yocum CF (1996) Oxygenic photosynthesis – the light reactions. Kluwer Academic Publ., Dordrecht

    Google Scholar 

  • Peloquin JM, Britt RD (2001) EPR/ENDOR characterization of the physical and electronic structure of the OEC Mn cluster. Biochim Biophys Acta 1503:96–111

    Article  PubMed  CAS  Google Scholar 

  • Penner-Hahn JE (1999a) Structural characterization of the Mn site in the photosynthetic oxygen-evolving complex. In: Hill HAO, Sadler PJ, Thomson AJ (eds) Metal sites in proteins and models: redox centers. Springer, Berlin, pp 1–36

    Google Scholar 

  • Penner-Hahn JE (1999b) X-ray absorption spectroscopy in coordination chemistry. Coord Chem Rev 190–192:1101–1123

    Article  Google Scholar 

  • Penner-Hahn JE, Yocum CF (2006) Photosynthetic oxygen production – response. Science 312:1470–1471

    CAS  Google Scholar 

  • Pospisil P, Haumann M, Dittmer J, Sole VA, Dau H (2003) Stepwise transition of the tetra-manganese complex of photosystem II to a binuclear Mn2(m-O)2 complex in response to a temperature jump: a time-resolved structural investigation eEmploying X-ray absorption spectroscopy. Biophys J 84:1370–1386

    Article  PubMed  CAS  Google Scholar 

  • Rappaport F, Blanchard-Desce M, Lavergne J (1994) Kinetics of electron transfer and electrochromic change during the redox transition of the photosynthetic oxygen-evolving complex. Biochim Biophys Acta 1184:178–192

    Article  CAS  Google Scholar 

  • Razeghifard MR, Pace RJ (1997) Electron paramagnetic resonance kinetic studies of the S states in spinach PSII membranes. Biochim Biophys Acta 1322:141–150

    Article  Google Scholar 

  • Razeghifard MR, Pace RJ (1999) EPR kinetic studies of oxygen release in thylakoids and PSII membranes: an intermediate in the S3 to S0 transition. Biochemistry 38:1252–1257

    Article  PubMed  CAS  Google Scholar 

  • Rehder D, Schulzke C, Dau H, Meinke C, Hanss J, Epple M (2000) Water and bromide in the active center of vanadate-dependent haloperoxidases. J Inorg Biochem 80:115–121

    Article  PubMed  CAS  Google Scholar 

  • Renger G (2001) Photosynthetic water oxidation to molecular oxygen: apparatus and mechanism. Biochim Biophys Acta 1503:210–228

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Hanssum B (1992) Studies on the reaction coordinates of the water oxidase in PS II membrane fragments from spinach. FEBS Lett 299:28–32

    Article  PubMed  CAS  Google Scholar 

  • Renger G, Weiss W (1982) The detection of intrinsic 320 nm absorption changes reflecting the turnover of the water-splitting enzyme system Y which leads to oxygen formation in trypsinized chloroplasts. FEBS Lett 137(2):217–221

    Article  CAS  Google Scholar 

  • Riggs-Gelasco PJ, Mei R, Yocum CF, Penner-Hahn JE (1996) Reduced derivatives of the Mn cluster in the oxygen-evolving complex of photosystem II: an EXAFS study. J Am Chem Soc 118:2387–2399

    Article  CAS  Google Scholar 

  • Robblee JH, Cinco RM, Yachandra VK (2001) X-ray spectroscopy-based structure of the Mn cluster and mechanism of photosynthetic oxygen evolution. Biochim Biophys Acta 1503:7–23

    Article  PubMed  CAS  Google Scholar 

  • Schiller H, Dau H (2000) Preparation protocols for high-activity Photosystem II membrane particles of green algae and higher plants, pH dependence of oxygen evolution and comparison of the S2-state multiline signal by X-band EPR spectroscopy. J Photochem Photobiol B 55:138–144

    Article  PubMed  CAS  Google Scholar 

  • Schiller H, Dittmer J, Iuzzolino L, Dörner W, Meyer-Klaucke W, Sole VA, Nolting H-F, Dau H (1998) Structure and orientation of the oxygen-evolving manganese complex of green algae and higher plants investigated by X-ray absorption linear dichroism spectroscopy on oriented photosystem II membrane particles. Biochemistry 37:7340–7350

    Article  PubMed  CAS  Google Scholar 

  • Teo B (1986) EXAFS: basic principles and data analysis. Springer Verlag, Berlin, Germany

    Google Scholar 

  • Weng T-C, Hsieh W-Y, Uffelman ES, Gordon-Wylie SW, Collins TJ, Pecoraro VL, Penner-Hahn JE (2004) XANES evidence against a manganyl species in the S3 state of the oxygen-evolving complex. J Am Chem Soc 126:8070–8071

    Article  PubMed  CAS  Google Scholar 

  • Westphal KL, Lydakis-Simantiris N, Cukier RI, Babcock GT (2000) Effects of Sr2+-substitution on the reduction rates of Yz* in PSII membranes – evidence for concerted hydrogen-atom transfer in oxygen evolution. Biochemistry 39:16220–16229

    Article  PubMed  CAS  Google Scholar 

  • Witt HT, Rumberg B, Schmidt-Mende P, Siggel U, Skerra B, Vater J, Weikard J (1965) On the analysis of photosynthesis by flashlight techniques. Angew Chem In Ed 4:799–819

    Article  CAS  Google Scholar 

  • Yamanari T, Kimura Y, Mizusawa N, Ishii A, Ono T-A (2004) Mid- to low-frequency Fourier transform infrared spectra of S-state cycle for photosynthetic water oxidation in Synechocystis sp. PCC 6803. Biochemistry 43:7479–7490

    Article  PubMed  CAS  Google Scholar 

  • Yano J, Kern J, Irrgang K-D, Latimer MJ, Bergmann U, Glatzel P, Pushkar Y, Biesiadka J, Loll B, Sauer K, Messinger J, Zouni A, Yachandra VK (2005) X-ray damage to the Mn4Ca complex in single crystals of photosystem II: a case study for metalloprotein crystallography. Proc Natl Acad Sci USA 102:12047–12052

    Article  PubMed  CAS  Google Scholar 

  • Zouni A, Witt HT, Kern J, Fromme P, Krauss N, Saenger W, Orth P (2001) Crystal structure of photosystem II from Synechococcus elongatus at 3.8 Å resolution. Nature 409:739–743

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The time-resolved X-ray experiments were carried out at the experimental station ID26 of the European Synchrotron Radiation Facility (ESRF, Grenoble, France). We thank Drs. Thomas Neisius, Sigrid Eeckhout, and especially Pieter Glatzel (all ESRF) who contributed significantly to the preparation of the X-ray experiment. Dr. Peter Liebisch, Dr. Claudia Müller, Marcos Barra, and Paola Loja (all Berlin) contributed strongly to the time-resolved X-ray experiments by sample preparation and XAS data collection; Dr. Markus Grabolle (Berlin) measured and analyzed the discussed time-resolved delayed fluorescence data. Drs. Jens Dittmer (Aarhus, Denmark), Pavel Pospíšil (Olomouc, Czech Republic), and Armando Solè (Grenoble, France) contributed significantly to preliminary experiments. Financial support by the DFG (SFB 498) and the BMBF (grant 05KS1KEA/6 in the BioH2 consortium) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Holger Dau or Michael Haumann.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Dau, H., Haumann, M. Time-resolved X-ray spectroscopy leads to an extension of the classical S-state cycle model of photosynthetic oxygen evolution. Photosynth Res 92, 327–343 (2007). https://doi.org/10.1007/s11120-007-9141-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11120-007-9141-9

Keywords

Navigation