Log in

Genome-wide identification and classification of Lipoxygenase gene family and their roles in sorghum-aphid interaction

  • Published:
Plant Molecular Biology Aims and scope Submit manuscript

Abstract

Key message

This report shows detailed characterization of LOX gene family in sorghum and provides new insight of sorghum LOX genes in genetic structure and their roles in plant response to infestation by sugarcane aphids.

Abstract

Lipoxygenases (LOXs) are monomeric, nonheme iron-containing dioxygenases that initiate the fatty acid oxidation pathway creating oxylipins and plant hormone jasmonate both have a key role in plant development and defense. To date, a comprehensive and systematic analysis of sorghum LOXs is still deficient. Thus, we performed a genome-wide analysis of the sorghum LOXs genome and identified nine LOXs genes. Detailed examination of protein sequences and phylogenetic analysis categorized the sorghum LOXs into two subclasses, 9-LOXs (SbLOX1, SbLOX3, SbLOX4, SbLOXm, and SbLOXo), 13-LOXs (SbLOX9, SbLOX5, and SbLOX2), and the unclassified SbLOX8. This classification was further supported by sequence similarity/identity matrix and subcellular localization analysis. The lipoxygenase domains, motifs, and vital amino acids were highly conserved in all sorghum LOX genes. In silico analysis of the promoter region of SbLOXs identified different hormones responsive cis-elements. Furthermore, to explore the roles of sorghum LOXs during sugarcane aphid feeding and exogenous MeJA application, expression analysis was conducted for all the eight LOXs in resistant (Tx2783) and susceptible (Tx7000) sorghum lines, respectively. As detailed in this report, the data generated from both genome-wide identification and expression analysis of lipoxygenase genes suggest the putative functions of two 13-LOXs (SbLOX9 and SbLOX5) and three 9-LOXs (SbLOX1, SbLOX3, and SbLOXo) in biosynthesis of jasmonic acid, green leaf volatiles and death acids, and all of them are involved in defense-related functions in plants. Furthermore, this report represents the first genome-wide analysis of the LOX gene family in sorghum, which will facilitate future studies to characterize the roles of each individual LOXs gene in aphid resistance and defense responses to other stresses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1

Modified from Schiller et al. (2015) and Woldemariam et al. (2017)

Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Allmann S, Halitschke R, Schuurink RC, Baldwin IT (2010) Oxylipin channelling in Nicotiana attenuata: lipoxygenase 2 supplies substrates for green leaf volatile production. Plant, Cell Environ 33:2028–2040

    Article  CAS  Google Scholar 

  • Bailly C, Bogatek-Leszczynska R, Côme D, Corbineau F (2002) Changes in activities of antioxidant enzymes and lipoxygenase during growth of sunflower seedlings from seeds of different vigour Seed Science Research 12:47

    CAS  Google Scholar 

  • Bannenberg G, Martínez M, Hamberg M, Castresana C (2009) Diversity of the enzymatic activity in the lipoxygenase gene family of Arabidopsis thaliana. Lipids 44:85

    Article  CAS  PubMed  Google Scholar 

  • Barry CS, Giovannoni JJ (2007) Ethylene and fruit ripening. J Plant Growth Regul 26:143

    Article  CAS  Google Scholar 

  • Bell E, Creelman RA, Mullet JE (1995) A chloroplast lipoxygenase is required for wound-induced jasmonic acid accumulation in Arabidopsis. Proc Natl Acad Sci 92:8675–8679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bowling RD et al (2016) Sugarcane aphid (Hemiptera: Aphididae): a new pest on sorghum in North America. Journal of Integrated Pest Management 7:12

    Article  PubMed  PubMed Central  Google Scholar 

  • Brash AR (1999) Lipoxygenases: occurrence, functions, catalysis, and acquisition of substrate. J Biol Chem 274:23679–23682

    Article  CAS  PubMed  Google Scholar 

  • Caldelari D, Wang G, Farmer EE, Dong X (2011) Arabidopsis lox3 lox4 double mutants are male sterile and defective in global proliferative arrest. Plant Mol Biol 75:25–33

    Article  CAS  PubMed  Google Scholar 

  • Chang J, Duan X, Cui J, Xue W, Zhang Q (2012) Differential molecular responses of aphid-sensitive and aphid-resistant sorghum lines to aphid infestation Arthropod-Plant. Interactions 6:113–120

    Google Scholar 

  • Chen Z, Chen X, Yan H, Li W, Li Y, Cai R, **ang Y (2015) The lipoxygenase gene family in poplar: identification, classification, and expression in response to MeJA treatment. PLoS ONE 10:e0125526

    Article  PubMed  PubMed Central  Google Scholar 

  • Christensen SA et al. (2015) Maize death acids, 9-lipoxygenase–derived cyclopente (a) nones, display activity as cytotoxic phytoalexins and transcriptional mediators Proceedings of the National Academy of Sciences 112:11407–11412

  • Christensen SA et al (2013) The maize lipoxygenase, Zm LOX 10, mediates green leaf volatile, jasmonate and herbivore-induced plant volatile production for defense against insect attack. Plant J 74:59–73

    Article  CAS  PubMed  Google Scholar 

  • Christensen SA, Huffaker A, Hunter CT, Alborn HT, Schmelz EA (2016) A maize death acid, 10-oxo-11-phytoenoic acid, is the predominant cyclopentenone signal present during multiple stress and developmental conditions. Plant Signaling Behavior 11:e1120395

    Article  PubMed  Google Scholar 

  • Constantino N et al (2013) Root-expressed maize lipoxygenase 3 negatively regulates induced systemic resistance to Colletotrichum graminicola in shoots. Frontiers in Plant Science 4:510

    Article  PubMed  PubMed Central  Google Scholar 

  • Crooks GE, Hon G, Chandonia J-M, Brenner SE (2004) WebLogo: a sequence logo generator. Genome Res 14:1188–1190

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Edgar RC (2004) MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics 5:113

    Article  PubMed  PubMed Central  Google Scholar 

  • Ellis C, Karafyllidis I, Turner JG (2002) Constitutive activation of jasmonate signaling in an Arabidopsis mutant correlates with enhanced resistance to Erysiphe cichoracearum. Pseudomonas syringae, and Myzus persicae Molecular Plant-Microbe Interactions 15:1025–1030

    Article  CAS  PubMed  Google Scholar 

  • Emanuelsson O, Nielsen H, Heijne GV (1999) ChloroP, a neural network-based method for predicting chloroplast transit peptides and their cleavage sites. Protein Sci 8:978–984

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  PubMed  Google Scholar 

  • Feussner I, Wasternack C (2002) The lipoxygenase pathway. Annu Rev Plant Biol 53:275–297

    Article  CAS  PubMed  Google Scholar 

  • Glauser G, Dubugnon L, Mousavi SA, Rudaz S, Wolfender J-L, Farmer EE (2009) Velocity estimates for signal propagation leading to systemic jasmonic acid accumulation in wounded Arabidopsis. J Biol Chem 284:34506–34513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goldman N, Yang Z (1994) A codon-based model of nucleotide substitution for protein-coding DNA sequences. Mol Biol Evol 11:725–736

    CAS  PubMed  Google Scholar 

  • Harwood JL (2000) Eicosanoids and related compounds in plants and animals. In: AF Rowley, H. Kuhn and T. Schewe (Ed.). London, UK: Portland Press Ltd, The New Phytologist. 146:23–25

  • Heitz T, Bergey DR, Ryan CA (1997) A gene encoding a chloroplast-targeted lipoxygenase in tomato leaves is transiently induced by wounding, systemin, and methyl jasmonate. Plant Physiol 114:1085–1093

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu B, ** J, Guo A-Y, Zhang H, Luo J, Gao G (2015) GSDS 2.0: an upgraded gene feature visualization server. Bioinformatics 31:1296–1297

    Article  PubMed  Google Scholar 

  • Kumar S, Stecher G, Li M, Knyaz C, Tamura K (2018) MEGA X: molecular evolutionary genetics analysis across computing platforms. Mol Biol Evol 35:1547–1549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lescot M et al (2002) PlantCARE, a database of plant cis-acting regulatory elements and a portal to tools for in silico analysis of promoter sequences. Nucleic Acids Res 30:325–327

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li H, Huang Y (2017) Expression of brown-midrib in a spontaneous sorghum mutant is linked to a 5′-UTR deletion in lignin biosynthesis gene SbCAD2. Scientific Reports 7:1–10

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Ma F, Yang X, Shi Z, Miao X (2020) Novel crosstalk between ethylene-and jasmonic acid-pathway responses to a piercing–sucking insect in rice. New Phytol 225:474–487

    Article  CAS  PubMed  Google Scholar 

  • Melan MA, Dong X, Endara ME, Davis KR, Ausubel FM, Peterman TK (1993) An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol 101:441–450

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mewis I, Tokuhisa JG, Schultz JC, Appel HM, Ulrichs C, Gershenzon J (2006) Gene expression and glucosinolate accumulation in Arabidopsis thaliana in response to generalist and specialist herbivores of different feeding guilds and the role of defense signaling pathways. Phytochemistry 67:2450–2462

    Article  CAS  PubMed  Google Scholar 

  • Moran PJ, Thompson GA (2001) Molecular responses to aphid feeding in Arabidopsis in relation to plant defense pathways. Plant Physiol 125:1074–1085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalam VJ, Keeretaweep J, Sarowar S, Shah J (2012) Root-derived oxylipins promote green peach aphid performance on Arabidopsis foliage. Plant Cell 24:1643–1653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nalam VJ, Keereetaweep J, Shah J (2013) The green peach aphid, Myzus persicae, acquires a LIPOXYGENASE5-derived oxylipin from Arabidopsis thaliana, which promotes colonization of the host plant. Plant Signaling Behavior 8:e22735

    Article  PubMed  Google Scholar 

  • Ogunola OF et al (2017) Characterization of the maize lipoxygenase gene family in relation to aflatoxin accumulation resistance. PLoS ONE 12:e0181265

    Article  PubMed  PubMed Central  Google Scholar 

  • Padilla MN, Hernández ML, Sanz C, Martinez-Rivas JM (2009) Functional characterization of two 13-lipoxygenase genes from olive fruit in relation to the biosynthesis of volatile compounds of virgin olive oil. Journal of Agricultural and Food Chemistry 57:9097–9107

    Article  CAS  PubMed  Google Scholar 

  • Padilla MN, Hernández ML, Sanz C, Martínez-Rivas JM (2012) Molecular cloning, functional characterization and transcriptional regulation of a 9-lipoxygenase gene from olive. Phytochemistry 74:58–68

    Article  CAS  PubMed  Google Scholar 

  • Quevillon E, Silventoinen V, Pillai S, Harte N, Mulder N, Apweiler R, Lopez R (2005) InterProScan: protein domains identifier. Nucleic Acids Res 33:W116–W120

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reymond P, Weber H, Damond M, Farmer EE (2000) Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Royo J, Vancanneyt G, Pérez AG, Sanz C, Störmann K, Rosahl S, Sánchez-Serrano JJ (1996) Characterization of three potato lipoxygenases with distinct enzymatic activities and different organ-specific and wound-regulated expression patterns. J Biol Chem 271:21012–21019

    Article  CAS  PubMed  Google Scholar 

  • Sarde SJ, Kumar A, Remme RN, Dicke M (2018) Genome-wide identification, classification and expression of lipoxygenase gene family in pepper. Plant Mol Biol 98:375–387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Schommer C et al (2008) Control of jasmonate biosynthesis and senescence by miR319 targets. PLoS Biol 6:e230

    Article  PubMed  PubMed Central  Google Scholar 

  • Sharp AJ et al (2005) Segmental duplications and copy-number variation in the human genome. The American Journal of Human Genetics 77:78–88

    Article  CAS  PubMed  Google Scholar 

  • Shen J et al (2014) A 13-lipoxygenase, TomloxC, is essential for synthesis of C5 flavour volatiles in tomato. J Exp Bot 65:419–428

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shivaji R et al (2010) Plants on constant alert: elevated levels of jasmonic acid and jasmonate-induced transcripts in caterpillar-resistant maize. J Chem Ecol 36:179–191

    Article  CAS  PubMed  Google Scholar 

  • Siedow JN (1991) Plant lipoxygenase: structure and function. Annu Rev Plant Biol 42:145–188

    Article  CAS  Google Scholar 

  • Singh B, Padmaja P, Seetharama N (2004) Biology and management of the sugarcane aphid, Melanaphis sacchari (Zehntner)(Homoptera: Aphididae), in sorghum: a review. Crop Protection 23:739–755

    Article  Google Scholar 

  • Song H, Wang P, Li C, Han S, Lopez-Baltazar J, Zhang X, Wang X (2016) Identification of lipoxygenase (LOX) genes from legumes and their responses in wild type and cultivated peanut upon Aspergillus flavus infection. Scientific reports 6:35245

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Steczko J, Donoho GP, Clemens JC, Dixon JE, Axelrod B (1992) Conserved histidine residues in soybean lipoxygenase: functional consequences of their replacement. Biochemistry 31:4053–4057

    Article  CAS  PubMed  Google Scholar 

  • Team RC (2013) R: A language and environment for statistical computing. Austria, Vienna

    Google Scholar 

  • Thaler JS, Humphrey PT, Whiteman NK (2012) Evolution of jasmonate and salicylate signal crosstalk. Trends Plant Sci 17:260–270

    Article  CAS  PubMed  Google Scholar 

  • Tzin V et al (2015) Dynamic maize responses to aphid feeding are revealed by a time series of transcriptomic and metabolomic assays. Plant Physiol 169:1727–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  • ul Hassan MN, Zainal Z, Ismail I, (2015) Green leaf volatiles: biosynthesis, biological functions and their applications in biotechnology. Plant Biotechnol J 13:727–739

    Article  CAS  PubMed  Google Scholar 

  • Umate P (2011) Genome-wide analysis of lipoxygenase gene family in Arabidopsis and rice. Plant Signaling Behavior 6:335–338

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Upadhyay RK, Mattoo AK (2018) Genome-wide identification of tomato (Solanum lycopersicum L.) lipoxygenases coupled with expression profiles during plant development and in response to methyl-jasmonate and wounding. J Plant Physiol 231:318–328

    Article  CAS  PubMed  Google Scholar 

  • USDA N (2017) Quick stats USDA National Agriculural Statistics Service, Washington, DC https://quickstats.nass.usda.gov/. Accessed 3 May 2019

  • Wang JW, Wu JY (2005) Nitric oxide is involved in methyl jasmonate-induced defense responses and secondary metabolism activities of Taxus cells. Plant Cell Physiol 46:923–930

    Article  CAS  PubMed  Google Scholar 

  • Wasternack C, Parthier B (1997) Jasmonate-signalled plant gene expression. Trends Plant Sci 2:302–307

    Article  Google Scholar 

  • Woldemariam MG, Ahern K, Jander G, Tzin V (2018) A role for 9-lipoxygenases in maize defense against insect herbivory. Plant Signaling Behavior 13:4709–4723

    Article  Google Scholar 

  • Yan L et al (2013) Role of tomato lipoxygenase D in wound-induced jasmonate biosynthesis and plant immunity to insect herbivores. PLoS Genet 9:e1003964

    Article  PubMed  PubMed Central  Google Scholar 

  • Yang F et al (2015) Analysis of key genes of jasmonic acid mediated signal pathway for defense against insect damages by comparative transcriptome sequencing. Scientific Reports 5:16500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yu C-S, Cheng C-W, Su W-C, Chang K-C, Huang S-W, Hwang J-K, Lu C-H (2014) CELLO2GO: a web server for protein subCELlular LOcalization prediction with functional gene ontology annotation. PLoS ONE 9:e99368

    Article  PubMed  PubMed Central  Google Scholar 

  • Zarate SI, Kempema LA, Walling LL (2007) Silverleaf whitefly induces salicylic acid defenses and suppresses effectual jasmonic acid defenses. Plant Physiol 143:866–875

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang B, Chen K, Bowen J, Allan A, Espley R, Karunairetnam S, Ferguson I (2006) Differential expression within the LOX gene family in ripening kiwifruit. J Exp Bot 57:3825–3836

    Article  CAS  PubMed  Google Scholar 

  • Zhang P-J, He Y-C, Zhao C, Ye Z-H, Yu X-P (2018) Jasmonic acid-dependent defenses play a key role in defending tomato against Bemisia tabaci nymphs, but not adults. Frontiers in plant science 9:1065

    Article  PubMed  PubMed Central  Google Scholar 

  • Zhou G, Qi J, Ren N, Cheng J, Erb M, Mao B, Lou Y (2009) Silencing OsHI-LOX makes rice more susceptible to chewing herbivores, but enhances resistance to a phloem feeder. Plant J 60:638–648

    Article  CAS  PubMed  Google Scholar 

  • Zhou G et al (2014) The 9-lipoxygenase Osr9-LOX1 interacts with the 13-lipoxygenase-mediated pathway to regulate resistance to chewing and piercing-sucking herbivores in rice. Physiol Plant 152:59–69

    Article  CAS  PubMed  Google Scholar 

  • Zhu-Salzman K, Salzman RA, Ahn J-E, Koiwa H (2004) Transcriptional regulation of sorghum defense determinants against a phloem-feeding aphid. Plant Physiol 134:420–431

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zuckerkandl E, Pauling L (1965) Evolutionary divergence and convergence in proteins. In: Bryson V, Vogel HJ (eds) Evolving genes and proteins. Elsevier, Amsterdam, pp 97–166

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Ms. Angela L. Phillips for her excellent technical assistance. The U.S. Department of Agriculture, Agricultural Research Service, is an equal opportunity provider and employer and all agency services are available without discrimination. Mention of a trademark or proprietary product does not constitute a guarantee or warranty of a product by the U.S. Department of Agriculture and does not imply its approval to the exclusion of other products that may also be suitable.

Funding

This work was partly supported by funding from USDA-ARS CRIS project, Grant Number: 3072–21000-009-00D (YH).

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed the experiment: KS, SP and YH. Performed the experiments: KS and SP. Analyzed the data: KS and YH. Wrote the manuscript: KS and YH.

Corresponding author

Correspondence to Yinghua Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary Information 1 (docx 65 kb)

Below is the link to the electronic supplementary material.

Supplementary Information 2 (docx 39 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shrestha, K., Pant, S. & Huang, Y. Genome-wide identification and classification of Lipoxygenase gene family and their roles in sorghum-aphid interaction. Plant Mol Biol 105, 527–541 (2021). https://doi.org/10.1007/s11103-020-01107-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11103-020-01107-7

Keywords

Navigation