Log in

Boussinesq’s equations for (2+1)-dimensional surface gravity waves in an ideal fluid model

  • Original Paper
  • Published:
Nonlinear Dynamics Aims and scope Submit manuscript

Abstract

We study the problem of gravity surface waves for the ideal fluid model in the (2+1)-dimensional case. We apply a systematic procedure for deriving the Boussinesq equations for a prescribed relationship between the orders of four expansion parameters, the amplitude parameter \(\alpha \), the long-wavelength parameter \(\beta \), the transverse wavelength parameter \(\gamma \), and the bottom variation parameter \(\delta \). We also take into account surface tension effects when relevant. For all considered cases, the (2+1)-dimensional Boussinesq equations cannot be reduced to a single nonlinear wave equation for surface elevation function. On the other hand, they can be reduced to a single, highly nonlinear partial differential equation for an auxiliary function f(xyt) which determines the velocity potential but is not directly observed quantity. The solution f of this equation, if known, determines the surface elevation function. We also show that limiting the obtained the Boussinesq equations to (1+1)-dimensions one recovers well-known cases of the KdV, extended KdV, fifth-order KdV, and Gardner equations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Data availability

No datasets were generated or analysed during the current study.

References

  1. Korteweg, D.J., de Vries, H.: On the change of form of long waves advancing in a rectangular canal, and on a new type of long stationary waves. Phil. Mag. 39, 422–443 (1895)

    Article  MathSciNet  Google Scholar 

  2. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Dokl. Akad. Nauk SSSR 192, 753 (1970)

    MATH  Google Scholar 

  3. Kadomtsev, B.B., Petviashvili, V.I.: On the stability of solitary waves in weakly dispersive media. Sov. Phys. Dokl. 15, 539 (1970)

    MATH  Google Scholar 

  4. Wazwaz, A.-M.: Single and multiple-soliton solutions for the (2+1)-dimensional KdV equation. Appl. Math. Comput. 204, 20–26 (2008)

    MathSciNet  MATH  Google Scholar 

  5. Wazwaz, A.-M.: Four (2+1)-dimensional integrable extensions of the KdV equation: multiple-soliton and multiple singular soliton solutions. Appl. Math. Comput. 215, 1463–1476 (2009)

    MathSciNet  MATH  Google Scholar 

  6. Peng, Y.-Z.: A new (2+1)dimensional KdV equation and its localized structures. Commun. Theor. Phys. 54, 863–865 (2010)

    Article  MathSciNet  Google Scholar 

  7. Wazwaz, A.-M.: A new (2+1)-dimensional Korteweg-de Vries equation and its extension to a new (3+1)-dimensional Kadomtsev-Petviashvili equation. Phys. Scr. 84, 035010 (2011)

    Article  Google Scholar 

  8. Wang, Z., Zou, L., Zonh, Z., Qin, H.: A family of novel exact solutions to 2+1-dimensional KdV equation. Abstr. Appl. Anal. 2014, 764750 (2014)

    MathSciNet  MATH  Google Scholar 

  9. Adem, A.R.: A (2+1)-dimensional Korteweg-de Vries type equation in water waves: lie symmetry analysis; multiple exp-function method; conservation laws. Int. J. Mod. Phys. B 30, 1640001 (2016)

    Article  MathSciNet  Google Scholar 

  10. Zhang, X., Chen, Y.: Deformation rogue wave to the (2+1)-dimensional KdV equation. Nonlinear Dyn. 90, 755–763 (2017)

    Article  MathSciNet  Google Scholar 

  11. Batwa, S., Ma, W.-X.: Lump solutions to a (2+1)-dimensional fifth-order KdV-like equation. Adv. Math. Phys. 2018, 2062398 (2018)

    Article  MathSciNet  Google Scholar 

  12. Wanga, G., Karab, A.H.: A (2+1)-dimensional KdV equation and mKdV equation: symmetries, group invariant solutions and conservation laws. Phys. Lett. A 383, 728–731 (2019)

    Article  MathSciNet  Google Scholar 

  13. Lou, S.-Y.: A novel (2+1)-dimensional integrable KdV equation with peculiar solution structures. ar**v:2001.08571

  14. Fokou, M., Kofane, T.C., Mohamadou, A., Yomba, E.: Two-dimensional third-and fifth-order nonlinear evolution equations for shallow water waves with surface tension. Nonlinear Dyn. 91, 1177–1189 (2018)

    Article  Google Scholar 

  15. Rozmej, P., Karczewska, A.: Comment on “Two-dimensional third-and fifth-order nonlinear evolution equations for shallow water waves with surface tension”. Nonlinear Dyn. 105, 2855–2860 (2021). https://doi.org/10.1007/s11071-021-0-5

  16. Burde, G.I., Sergyeyev, A.: Ordering of two small parameters in the shallow water wave problem. J. Phys. A Math. Theor. 46, 075501 (2013)

    Article  MathSciNet  Google Scholar 

  17. Karczewska, A., Rozmej, P.: Can simple KdV-type equations be derived for shallow water problem with bottom bathymetry? Commun. Nonlinear Sci. Numer. Simul. 82, 105073 (2020)

    Article  MathSciNet  Google Scholar 

  18. Akers, B., Nicholls, D.P.: Travelling waves in deep water with gravity and surface tension. SIAM J. Appl. Math. 70, 2373–2389 (2010)

    Article  MathSciNet  Google Scholar 

  19. Falcon, E., Laroche, C., Fauve, S.: Observation of depression solitary surface waves on a thin fluid layer. Phys. Rev. Lett. 89, 204501 (2002)

    Article  Google Scholar 

  20. Karczewska, A., Rozmej, P., Infeld, E.: Shallow-water soliton dynamics beyond the Korteweg-de Vries equation. Phys. Rev. E 90, 012907 (2014)

    Article  Google Scholar 

  21. Marchant, T.R., Smyth, N.F.: The extended Korteweg-de Vries equation and the resonant flow of a fluid over topography. J. Fluid Mech. 221, 263–288 (1990)

    Article  MathSciNet  Google Scholar 

  22. Karczewska, A., Rozmej, P.: Boussinesq’s equations for (2+1)-dimensional surface gravity waves in an ideal fluid model. ar**v:2108.11150

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Karczewska.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Preprint

The preprint [22] has been deposited to ar**v and can be accessed at ar**v:2108.11150.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Surface tension terms

In the original, dimension variables, the term originating from additional pressure due to the surface tension has the following form [18]

$$\begin{aligned} \text {ST}=&-\frac{T}{\varrho }\;\nabla \cdot \left( \frac{\nabla \eta }{(1+\vert \nabla \eta \vert ^2)^{1/2}} \right) \nonumber \\ =&-\frac{T}{\varrho } \frac{(1+\eta _x^2)\eta _{yy}+(1+\eta _y^2)\eta _{xx}-2\eta _x \eta _y \eta _{xy}}{(1+\eta _x^2+\eta _y^2)^{3/2}} . \end{aligned}$$
(53)

In (53), \(\nabla =(\partial _x,\partial _y)\) is two-dimensional gradient operator, and T is fluid’s surface tension coefficient. After transformation (6) to nondimensional scaled variables, we obtain (tildas are again dropped)

$$\begin{aligned} \text {ST}&\!=\! -\!\frac{T}{\varrho g H^{2}} \frac{ \beta \left( 1\!+\!\alpha ^{2}\beta \eta _{y}^{2}\right) \eta _{xx}\!+\!\gamma \left( 1\!+\!\alpha ^{2}\beta \eta _{x}^{2}\right) \eta _{yy}\!-\!2\alpha ^{2}\beta \gamma \eta _{x}\eta _{y}\eta _{xy} }{ \left( 1+\alpha ^{2}\beta \eta _{x}^{2}+\alpha ^{2}\gamma \eta _{y}^{2}\right) ^{3/2}} \nonumber \\&=\!-\!\tau \! \left[ \beta \left( 1\!+\!\alpha ^{2}\beta \eta _{y}^{2}\right) \eta _{xx}\!+\!\gamma \left( 1\!+\!\alpha ^{2}\beta \eta _{x}^{2}\right) \eta _{yy}\!\right. \nonumber \\&\quad \left. -\!2\alpha ^{2}\beta \gamma \eta _{x}\eta _{y}\eta _{xy} \right] \nonumber \\&\quad \times \left( 1 -\frac{3}{2}\alpha ^{2}\beta \eta _{x}^{2}- \frac{3}{2}\alpha ^{2}\gamma \eta _{y}^{2}+ O(\beta ^{6}) \right) \nonumber \\&=-\tau ( \beta \eta _{xx}+\gamma \eta _{yy} +O(\beta ^4)). \end{aligned}$$
(54)

In (54), we first expand the factor \(1/\left( 1+\alpha ^{2}\beta \eta _{x}^{2}+\alpha ^{2}\gamma \eta _{y}^{2}\right) ^{3/2}\) assuming that terms \(\alpha ^{2}\beta \eta _{x}^{2}\) and \(\alpha ^{2}\gamma \eta _{y}^{2}\) are small.

Since we are interested in Boussinesq’s equations up to second order in small parameters, it is enough to use the surface term in the form

$$\begin{aligned} \text {ST} = -\tau \, ( \beta \eta _{xx}+\gamma \eta _{yy} ). \end{aligned}$$
(55)

First step towards solving Eq. (27)

We will try to find solution to Eq. (27) in two steps. First, assume that the function \(f^{(0)}\) fulfils Eq. (27) reduced to zeroth order, that is, the following holds

$$\begin{aligned} f^{(0)}_{xx} + \frac{\gamma }{\beta } f^{(0)}_{yy} -f^{(0)}_{tt} =0. \end{aligned}$$
(56)

Next, postulate the solution to (27) in the form

$$\begin{aligned} f= & {} f^{(0)}+\alpha \, a(x,y,t)+\beta \, b(x,y,t)\nonumber \\&+\gamma \, g(x,y,t)+\delta \, d(x,y,t), \end{aligned}$$
(57)

where abgd are first-order correction functions. Inserting f in the form (57) into (27) and retaining terms up to first order in small parameters yield

$$\begin{aligned}&f^{(0)}_{xx} + \frac{\gamma }{\beta } f^{(0)}_{yy} -f^{(0)}_{tt} \nonumber \\&\quad +\alpha \left( a_{xx} +\frac{\gamma }{\beta } a_{yy} -a_{tt} -2 f^{(0)}_{x} f^{(0)}_{xt} - f^{(0)}_{t} f^{(0)}_{xx} \right. \nonumber \\&\quad \left. -\frac{\gamma }{\beta } \left( 2f^{(0)}_{y} f^{(0)}_{yt} +f^{(0)}_{t} f^{(0)}_{yy}\right) \right) \nonumber \\&\quad + \beta \left( b_{xx} + \frac{\gamma }{\beta } b_{yy} -b_{tt} +\frac{1}{2} f^{(0)}_{xxtt} -\frac{1}{6} f^{(0)}_{4x} \right) \nonumber \\&\quad + \delta \left( d_{xx} + \frac{\gamma }{\beta } d_{yy} - d_{tt} - \frac{\gamma }{\beta } \left( h\, f^{(0)}_{y}\right) _{y} -\left( h\, f^{(0)}_{x}\right) _{x} \right) \nonumber \\&\quad + \gamma \left( g_{xx} +\frac{\gamma }{\beta } g_{yy} - g_{tt} -\frac{\gamma }{\beta } f^{(0)}_{4y} \right. \nonumber \\&\quad \left. +\frac{1}{2} f^{(0)}_{yytt} -2 f^{(0)}_{xxyy} \right) =0. \end{aligned}$$
(58)

Since \(f^{(0)}\) fulfils zeroth order Eq. (56) and small parameters can be arbitrary, condition (58) is equivalent to four inhomogeneous wave equations for the correction functions

$$\begin{aligned} a_{xx} +\frac{\gamma }{\beta } a_{yy} -a_{tt}&= 2 f^{(0)}_{x} f^{(0)}_{xt} + f^{(0)}_{t} f^{(0)}_{xx} \nonumber \\&\quad + \frac{\gamma }{\beta } \left( 2f^{(0)}_{y} f^{(0)}_{yt} +f^{(0)}_{t} f^{(0)}_{yy}\right) , \end{aligned}$$
(59)
$$\begin{aligned} b_{xx} + \frac{\gamma }{\beta } b_{yy} -b_{tt}&= -\frac{1}{2} f^{(0)}_{xxtt} +\frac{1}{6} f^{(0)}_{4x} , \end{aligned}$$
(60)
$$\begin{aligned} g_{xx} +\frac{\gamma }{\beta } g_{yy} - g_{tt}&= \frac{\gamma }{\beta } f^{(0)}_{4y} -\frac{1}{2} f^{(0)}_{yytt} +2 f^{(0)}_{xxyy} , \end{aligned}$$
(61)
$$\begin{aligned} d_{xx} + \frac{\gamma }{\beta } d_{yy} - d_{tt}&= \frac{\gamma }{\beta } \left( h\, f^{(0)}_{y}\right) _{y} +\left( h\, f^{(0)}_{x}\right) _{x} . \end{aligned}$$
(62)

For flat bottom case, \(~\delta =0\), Eq. (62) does not appear.

If solutions to Eqs. (56), (59)–(62) are known, then the time-dependent surface profile is given by Eq. (28).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karczewska, A., Rozmej, P. Boussinesq’s equations for (2+1)-dimensional surface gravity waves in an ideal fluid model. Nonlinear Dyn 108, 4069–4080 (2022). https://doi.org/10.1007/s11071-022-07385-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11071-022-07385-8

Keywords

Navigation