Log in

The third-order perturbed Korteweg-de Vries equation for shallow water waves with a non-flat bottom

  • Regular Article
  • Published:
The European Physical Journal Plus Aims and scope Submit manuscript

Abstract.

The goal of this work is to investigate, analytically and numerically, the dynamics of gravity water waves with the effects of the small surface tension and the bottom topography taken into account. Using a third-order perturbative approach of the Boussinesq equation, we obtain a new third-order perturbed Korteweg-de Vries (KdV) equation which includes nonlinear, dispersive, nonlocal and mixed nonlinear-dispersive terms, describing shallow water waves with a non-flat bottom and the surface tension. We show by numerical simulations, for various bottom shapes, that this new third-order perturbed KdV equation can support the propagation of solitary waves, whose profiles strongly depend on the surface tension. In particular, we show that the instability observed in the numerical simulation can be suppressed by the inclusion of small surface tension.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D.G. Korteweg, G. de Vries, Philos. Mag. 39, 422 (1895)

    Article  MathSciNet  Google Scholar 

  2. J.K. Hunter, J. Scherule, Physica D 32, 253 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  3. G.B. Whitham, Linear and Nonlinear Waves (Wiley, New York, 1999) reprint of the (1974) original, a Wiley-Interscience Publication

  4. M. Ablowitz, H. Segur, Solitons and the Inverse Scattering Transform, in SIAM Studies in Applied Mathematics, Vol. 4 (SIAM, Philadelphia, 1981)

  5. A.C. Newell, Solitons in Mathematics and Physics, in CBMS-NSF Regional Conference Series in Applied Mathematics, Vol. 48 (SIAM, Philadelphia, PA, 1985)

  6. R.S. Johnson, J. Nonlinear Math. Phys. 10, 72 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  7. T. Sakuma, Y. Kawanami, Phys. Rev. B 29, 869 (1984)

    Article  ADS  Google Scholar 

  8. X.-F. Panga, J. Phys. B 10, 415 (1999)

    ADS  Google Scholar 

  9. H.-Y. Hao, H.J. Maris, Phys. Rev. B 64, 064302 (2001)

    Article  ADS  Google Scholar 

  10. S. Poornakala, A. Das, P.K. Kaw, A. Sen, Z.M. Sheng, Y. Sentoku, K. Mima, K. Nishikawa, Phys. Plasmas 9, 3802 (2002)

    Article  ADS  Google Scholar 

  11. J.R. Apel, J.R. Holbrook, A.K. Liu, J.J. Tsai, J. Phys. Oceanogr. 15, 1625 (1985)

    Article  ADS  Google Scholar 

  12. A.K. Liu, Y.S. Chang, M.-K. Hsu, N.K. Liang, J. Geophys. Res. 103, 7995 (1998)

    Article  ADS  Google Scholar 

  13. M.H. Orr, P.C. Mignerey, J. Geophys. Res. 108, 3064 (2003)

    Article  ADS  Google Scholar 

  14. T.C. Kofane, B. Michaux, M. Remoissenet, J. Phys. C: Solid State Phys. 21, 1395 (1988)

    Article  ADS  Google Scholar 

  15. W. Duan, B. Wang, R. Wei, Phys. Rev. E 55, 1773 (1997)

    Article  ADS  Google Scholar 

  16. T.J. Pedley, The Fluid Mechanics of Large Blood Vessels (Cambridge University Press, Cambridge, 1980)

  17. N.J. Zabusky, M.D. Krustal, Phys. Rev. Lett. 15, 6 (1965)

    Article  Google Scholar 

  18. D.A. McDonald, Blood Flow in Arteries (Arnold, London, 1974)

  19. G.B. Whitham, Proc. R. Soc. London A 299, 6 (1967)

    Article  ADS  Google Scholar 

  20. A. Biswas, Appl. Math. Lett. 22, 208 (2009)

    Article  MathSciNet  Google Scholar 

  21. F. Chardard, Stabilité des Ondes Solitaires, PhD Thesis (2009)

  22. T. Kawahara, J. Phys. Soc. Jpn. 33, 260 (1972)

    Article  ADS  Google Scholar 

  23. T.B. Benjamin et al., Philos. Trans. R. Soc. London Ser. A 272, 47 (1972)

    Article  ADS  Google Scholar 

  24. A. Jeffrey, Z. Angew. Math. Mech. 58, 38 (1978)

    MathSciNet  Google Scholar 

  25. R.I. Joseph, R. Egri, Phys. Lett. A 61, 429 (1977)

    Article  ADS  Google Scholar 

  26. C.C. Mei, B. Le Méhauté, J. Geophys. Res. 71, 393 (1966)

    Article  ADS  MathSciNet  Google Scholar 

  27. D.H. Peregrine, J. Fluid Mech. 27, 815 (1967)

    Article  ADS  Google Scholar 

  28. O.S. Madsen, C.C. Mei, J. Fluid Mech. 39, 781 (1969)

    Article  ADS  Google Scholar 

  29. T. Kakutani, J. Phys. Soc. Jpn. 30, 272 (1971)

    Article  ADS  Google Scholar 

  30. R.S. Johnson, Proc. Camb. Philos. Soc. 73, 183 (1973)

    Article  ADS  Google Scholar 

  31. R.S. Johnson, J. Fluid Mech. 54, 81 (1972)

    Article  ADS  Google Scholar 

  32. H.-H. Dai, J. Phys. Soc. Jpn. 68, 1854 (1999)

    Article  ADS  Google Scholar 

  33. P.J. Olver, Phys. Lett. A 126, 501 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  34. E. Van Greosen, S.R. Pudjaprasetya, Wave Motion 18, 345 (1993)

    Article  MathSciNet  Google Scholar 

  35. S.R. Pudjaprasetya, E. Van Greosen, Wave Motion 23, 23 (1996)

    Article  MathSciNet  Google Scholar 

  36. W. Craig, P. Guyenne, D.P. Nicholls, C. Sulem, Proc. R. Soc. A 461, 839 (2005)

    Article  ADS  Google Scholar 

  37. R. Grimshaw, J. Fluid Mech. 42, 639 (1970)

    Article  ADS  Google Scholar 

  38. R. Grimshaw, J. Fluid Mech. 46, 611 (1971)

    Article  ADS  Google Scholar 

  39. E. Audusse, F. Brouchut, M.O. Bristeau, R. Klein, B. Perthame, Soc. Industr. Appl. Math. 25, 2050 (2004)

    Google Scholar 

  40. N. Thürey, U. Rüde, M. Stamminger, Animation of open water phenomena with coupled shallow water and free surface simulations, in ACM SIGGRAPH Symposium on Computer Animation (Eurographics Association, 2006)

  41. T. Gallouet, J.M. Herard, N. Seguin, Comput. Fluids 32, 479 (2003)

    Article  MathSciNet  Google Scholar 

  42. J.G. Zhou, D.M. Causon, D.M. Ingram, C.G. Mingham, Int. J. Numer. Methods Fluids 38, 769 (2002)

    Article  ADS  Google Scholar 

  43. Y. **ng, C. Wang Shu, J. Comput. Phys. 208, 206 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  44. B. Turan, K.H. Wang, J. Appl. Comput. Math. 3, 1 (2014)

    Google Scholar 

  45. R.H.J. Grimshaw, N.F. Smyth, J. Fluid Mech. 169, 429 (1986)

    Article  ADS  Google Scholar 

  46. N.F. Smyth, Proc. R. Soc. London A 409, 79 (1987)

    Article  ADS  Google Scholar 

  47. A.M. Kamchatnov, Y.-H. Kuo, T.-C. Lin, T.-L. Horng, S.-C. Gou, R. Clift, G.A. El, R.H.J. Grimshaw, Phys. Rev. E 86, 036605 (2012)

    Article  ADS  Google Scholar 

  48. A.E. Green, P.M. Naghdi, J. Fluid Mech. 78, 237 (1976)

    Article  ADS  Google Scholar 

  49. B.T. Nadiga, L.G. Margolin, P.K. Smolarkiewicz, Phys. Fluids 8, 2066 (1996)

    Article  ADS  Google Scholar 

  50. J.W. Kim, K.J. Bai, R.C. Ertekin, W.C. Webster, J. Eng. Math. 40, 17 (2001)

    Article  Google Scholar 

  51. A. Constantin, J. Fluid Mech. 740, 17 (2014)

    Article  ADS  MathSciNet  Google Scholar 

  52. H. Aspe, M.C. Depassier, Phys. Rev. A 41, 6 (1990)

    Article  Google Scholar 

  53. H. Guo **ang, M.G. Velarde, Commun. Theor. Phys. 34, 321 (2000)

    Article  Google Scholar 

  54. H.R. Dullin, G.A. Gottwald, D.D. Holm, Fluid Dyn. Res. 33, 73 (2003)

    Article  ADS  Google Scholar 

  55. G.I. Burde, Commun. Nonlinear Sci. Numer. Simul. 16, 1314 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  56. G.I. Burde, A. Sergyeyev, J. Phys. A: Math. Theor. 46, 075501 (2013)

    Article  ADS  Google Scholar 

  57. A. Karczewska, P. Rozmej, E. Infeld, Phys. Rev. E 90, 012907 (2014)

    Article  ADS  Google Scholar 

  58. J.K. Hunter, J. Scheurle, Physica D 32, 253 (1988)

    Article  ADS  MathSciNet  Google Scholar 

  59. A. Karasu-Kalkani, A. Karsau, A. Sakovich, S. Sarkovich, R. Turhan, J. Math. Phys. 49, 073516 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  60. T.R. Marchant, N.F. Symth, J. Fluid Mech. 221, 236 (1990)

    Article  Google Scholar 

  61. M. Fokou, T.C. Kofané, A. Mohamadou, E. Yomba, Nonlinear Dyn. 83, 2461 (2016)

    Article  Google Scholar 

  62. T.R. Marchant, Appl. Math. 109, 1 (2002)

    Google Scholar 

  63. A. Karczewska, P. Rozmej, L. Rutkowski, Phys. Scr. 89, 054026 (2014)

    Article  ADS  Google Scholar 

  64. C.J. Amick, J.F. Toland, Philos. Trans. R. Soc. London 303, 633 (1981)

    Article  ADS  Google Scholar 

  65. C.J. Amick, K. Kirchgssner, Solitary water-waves in the presence of surface tension, Vol. 4 (Springer, New York, 1987)

  66. C.J. Amick, K. Kirchgssner, A global theory of solitary water-waves in the presence of surface tension, Vol. 105 (Springer, 1989)

  67. M. Zhao, B. Teng, L. Cheng, Ocean Eng. 31, 2047 (2004)

    Article  Google Scholar 

  68. D.E. Mitsosakis, J. Math. Comput. Simul. 80, 860 (2009)

    Article  Google Scholar 

  69. C.S. Gardner, J.M. Greene, M.D. Kruskal, R.M. Miura, Phys. Rev. Lett. 19, 1095 (1967)

    Article  ADS  Google Scholar 

  70. N.J. Zabusky, Phys. Rev. 168, 124 (1968)

    Article  ADS  Google Scholar 

  71. N.J. Zabusky, C.J. Galvin, J. Fluid Mech. 47, 811 (1971)

    Article  ADS  Google Scholar 

  72. W.K. Melville, K.R. Helfrich, J. Fluid Mech. 178, 31 (1987)

    Article  ADS  Google Scholar 

  73. C.Y. Lee, R.C. Beardsley, J. Geophys. Res. 7, 338 (1974)

    Google Scholar 

  74. P.G. Baines, J. Fluid Mech. 140, 127 (1984)

    Article  ADS  Google Scholar 

  75. K.R. Helfrich, W.K. Melville, Annu. Rev. Fluid Mech. 38, 395 (2006)

    Article  ADS  Google Scholar 

  76. A.T. Ippen, G. Kulin, MIT Hydrodynamics Laboratory Tech. Report, No. 15 (1955)

  77. J.L. Hammack, J. Fluid Mech. 60, 769 (1973)

    Article  ADS  Google Scholar 

  78. J.L. Hammack, H. Segur, J. Fluid Mech. 65, 289 (1974)

    Article  ADS  MathSciNet  Google Scholar 

  79. J.L. Hammack, H. Segur, J. Fluid Mech. 84, 337 (1978)

    Article  ADS  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Fokou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fokou, M., Kofané, T.C., Mohamadou, A. et al. The third-order perturbed Korteweg-de Vries equation for shallow water waves with a non-flat bottom. Eur. Phys. J. Plus 132, 410 (2017). https://doi.org/10.1140/epjp/i2017-11709-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1140/epjp/i2017-11709-0

Navigation