Log in

Object detection in adverse weather condition for autonomous vehicles

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

As self-driving or autonomous vehicles proliferate in our society, there is a need for their computing vision systems to be able to identify objects accurately, no matter the weather condition. One major concern in computer vision is improving an autonomous car’s capacity to discern between the components of its environment under challenging conditions. For instance, inclement weather like fog and rain can corrupt images which eventually affect how well autonomous vehicles navigate and localise themselves. To provide an efficient and effective approach for autonomous vehicles to accurately detect objects during adverse weather conditions. The study employed the combination of two deep learning approaches, namely YOLOv7 and ESRGAN. The use of ESRGAN is to first learn from a set of training data and adjust for the unfavourable weather conditions in the images before the YOLOv7 detector performs detection of objects. The use of the ESRGAN allowed for the adaptive enhancement of each image for improved detection performance by the YOLOv7. In both good and bad weather, the employed hybrid approach (YOLOv7 + ESRGAN) works well with about 80% accuracy in detecting all objects during adverse weather conditions. We would recommend further study on the methodology utilised in this paper to tackle the trolley-dilemma problem during inclement weather.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data availability

The DAWN dataset considered for this study is sourced from Kaggle which is an open-source data repository, and the MC COCO dataset is also available dataset sourced from the COCO, Kaggle or GitHub repository. Please refer to the description of datasets in Section 3.1 for further details.

Notes

  1. data.mendeley.com/datasets/766ygrbt8y/3.

References

  1. Al-Haija QA, Gharaibeh M, Odeh A (2022) Detection in adverse weather conditions for autonomous vehicles via deep learning. Ai 3(2):303–317. https://doi.org/10.3390/ai3020019

    Article  Google Scholar 

  2. Alshamrani SS, Alkhudadi BA, Almtrafi SM (2022) Cyberattacks on Self-Driving Cars and Surgical and Eldercare Robots. Secur Commun Netw 2022. https://doi.org/10.1155/2022/8045874

  3. Aryal M, Baine N (2019) Detection, classification, and tracking of objects for autonomous vehicles. ION 2019 International Technical Meeting Proceedings, 870–883. https://doi.org/10.33012/2019.16731

  4. Baker-Campbell A (2020) Fair Weather Friend: How do LiDAR Systems Cope in Rain & Fog? - AutoVision News. https://www.autovision-news.com/adas/lidar-systems-rain-fog/. Accessed  19 Aug 2022

  5. Bathla G, Bhadane K, Singh RK, Kumar R, Aluvalu R, Krishnamurthi R, Kumar A, Thakur RN, Basheer S (2022) Autonomous vehicles and intelligent automation: Applications, challenges, and opportunities. in: Mobile Information Systems, vol 2022, Hindawi Limited. https://doi.org/10.1155/2022/7632892

  6. Carion N, Massa F, Synnaeve G, Usunier N, Kirillov A, Zagoruyko S (2020) End-to-end object detection with transformers. CoRR, abs/2005.12872. https://arxiv.org/abs/2005.12872

  7. Chakraborty D (2022a) Super-Resolution Generative Adversarial Networks (SRGAN) - PyImageSearch. https://pyimagesearch.com/2022/06/06/super-resolution-generative-adversarial-networks-srgan/. Accessed 27 Sept 2022

  8. Chakraborty D (2022b) Enhanced Super-Resolution Generative Adversarial Networks (ESRGAN) - PyImageSearch. https://pyimagesearch.com/2022/06/13/enhanced-super-resolution-generative-adversarial-networks-esrgan/. Accessed 28 Sept 2022

  9. Chen XZ, Chang CM, Yu CW, Chen YL (2020) A real-time vehicle detection system under various bad weather conditions based on a deep learning model without retraining. Sensors 20(20):5731. https://doi.org/10.3390/S20205731

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  10. Chu WT, Zheng XY, Ding DS (2017) Camera as weather sensor: Estimating weather information from single images. J Vis Commun Image Represent 46:233–249. https://doi.org/10.1016/J.JVCIR.2017.04.002

    Article  Google Scholar 

  11. Cui Y, Yan L, Cao Z, Liu D (2021a) TF-blender: Temporal feature blender for video object detection. In: 2021 IEEE/CVF International Conference on Computer Vision (ICCV), pp 8118–8127

  12. Cui Y, Cao Z, **e Y, Jiang X, Tao F, Chen YV, Li L, Liu D (2022) DG-labeler and DGL-MOTS Dataset: boost the autonomous driving perception. In: Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision, pp 58–67

  13. Cunneen M, Mullins M, Murphy F, Shannon D, Furxhi I, Ryan C (2020) Autonomous Vehicles and Avoiding the Trolley (Dilemma): Vehicle Perception, Classification, and the Challenges of Framing Decision Ethics. Cybern Syst 51(1):59–80. https://doi.org/10.1080/01969722.2019.1660541

    Article  Google Scholar 

  14. Ding Q, Li P, Yan X, Shi D, Liang L, Wang W, **e H, Li J, Wei M (2022) CF-YOLO: Cross Fusion YOLO for Object Detection in Adverse Weather with a High-quality Real Snow Dataset. 14(8), 1–10. http://arxiv.org/abs/2206.01381

  15. Edelstein S (2017, June 6) NuTonomy and Lyft Joining Forces on Self-Driving Cars. https://www.thedrive.com/tech/11161/nutonomy-and-lyft-joining-forces-on-self-driving-cars?iid=sr-link3

  16. Elallid BB, Benamar N, Hafid AS, Rachidi T, Mrani N (2022) A Comprehensive Survey on the Application of Deep and Reinforcement Learning Approaches in Autonomous Driving. J King Saud Univ - Comput Inf Sci 34(9):7366–7390. https://doi.org/10.1016/j.jksuci.2022.03.013

    Article  Google Scholar 

  17. Fersch T, Weigel R, Koelpin A (2017) Challenges in miniaturized automotive long-range lidar system design. Three-Dimensional Imaging, Visualization, and Display 2017, 10219, 102190T. https://doi.org/10.1117/12.2260894

  18. Fursa I, Newman P, Cuzzolin F, Bradley A (2021) Multi-weather city : Adverse weather stacking for autonomous driving. 2021 IEEE/CVF International Conference on Computer Vision Workshops (ICCVW), 2906–2915. https://doi.org/10.1109/ICCVW54120.2021.00325

  19. Geisslinger M, Poszler F, Betz J, Lütge C, Lienkamp M (2021) Autonomous Driving Ethics: from Trolley Problem to Ethics of Risk. Philos Technol 34(4):1033–1055. https://doi.org/10.1007/s13347-021-00449-4

    Article  Google Scholar 

  20. Ghasemieh A, Kashef R (2022) 3D object detection for autonomous driving: Methods, models, sensors, data, and challenges. Transp Eng Aust 8:100115. https://doi.org/10.1016/J.TRENG.2022.100115

    Article  Google Scholar 

  21. Gultepe I (2007) Fog and Boundary Layer Clouds: Fog Visibility and Forecasting. Fog Visibility and Forecasting, Fog and Boundary Layer Clouds. https://doi.org/10.1007/978-3-7643-8419-7

    Book  Google Scholar 

  22. Hassen AA (2007) Indicators for the signal degradation and optimization of automotive radar sensors under adverse weather conditions (Doctoral dissertation, Technische Universität)

  23. Heinzler R, Schindler P, Seekircher J, Ritter W, Stork W (2019) Weather influence and classification with automotive lidar sensors. In 2019 IEEE intelligent vehiclessymposium (IV). IEEE, pp 1527–1534. https://doi.org/10.1109/IVS.2019.8814205

  24. Hnewa M, Radha H (2020) Object Detection Under Rainy Conditions for Autonomous Vehicles: A Review of State-of-the-Art and Emerging Techniques. IEEE Signal Process Mag 38(1):53–67. https://doi.org/10.1109/MSP.2020.2984801

    Article  Google Scholar 

  25. Hnewa M, Radha H (2021) Object Detection under Rainy Conditions for Autonomous Vehicles: A Review of State-of-the-Art and Emerging Techniques. IEEE Signal Process Mag 38(1):53–67. https://doi.org/10.1109/MSP.2020.2984801

    Article  ADS  Google Scholar 

  26. Ho JS, Tan BC, Lau TC, Khan N (2023) Public Acceptance towards Emerging Autonomous Vehicle Technology: A Bibliometric Research. Sustainability 15(2):1566. https://doi.org/10.3390/su15021566

    Article  Google Scholar 

  27. Hui J (2018) GAN — Super Resolution GAN (SRGAN). https://jonathan-hui.medium.com/gan-super-resolution-gan-srgan-b471da7270ec. Accessed 01/08/2022

  28. Jokela M, Pyykonen P, Kutila M, Kauvo K (2019) LiDAR performance review in arctic conditions. In: 2019 IEEE 15th International Conference on Intelligent Computer Communication and Processing (ICCP). IEEE, pp 27–31. https://doi.org/10.1109/ICCP48234.2019.8959554

  29. Kenk MA, Hassaballah M (2020) DAWN: vehicle detection in adverse weather nature dataset. ar**v preprint ar**v:2008.05402

  30. Khan F, Kumar RL, Kadry S, Nam Y, Meqdad MN (2021) Autonomous vehicles: A study of implementation and security. International. J Electr Comput Eng 11(4):3013–3021. https://doi.org/10.11591/IJECE.V11I4.PP3013-3021

    Article  Google Scholar 

  31. Kim TJ (2018) Automated Autonomous Vehicles: Prospects and Impacts on Society. J Transp Technol 08(03):137–150. https://doi.org/10.4236/JTTS.2018.83008

    Article  Google Scholar 

  32. Ledig C, Theis L, Huszár F, Caballero J, Cunningham A, Acosta A, Aitken A, Tejani A, Totz J, Wang Z, Shi W (2017) Photo-realistic single image super-resolution using a generative adversarial network. In: Proceedings of the IEEE conference on computer vision and pattern recognition, pp 4681–4690

  33. Limitations for camera and radar unit | Camera and radar unit | Driver support | V60 2019 Late | Volvo Support. (2020, September 7) https://www.volvocars.com/en-th/support/manuals/v60/2018w46/driver-support/camera-and-radar-unit/limitations-for-camera-and-radar-unit

  34. Lin TY, Maire M, Belongie S, Bourdev L, Girshick R, Hays J, Perona P, Ramanan D, ... Zitnick CL (2014) Microsoft coco: Common objects in context. In: Computer Vision–ECCV 2014: 13th European Conference, Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V 13. Springer International Publishing, pp 740–755. http://arxiv.org/abs/1405.0312

  35. Lin T, Zitnick CL, Doll P (n.d.) Microsoft COCO : Common Objects in Context. 1–15

  36. Liu W, Anguelov D, Erhan D, Szegedy C, Reed S, Fu CY, Berg AC (2016) SSD: Single shot multibox detector. In: Computer Vision–ECCV 2016: 14th European Conference, Amsterdam, The Netherlands, October 11–14, 2016, Proceedings, Part I 14. Springer International Publishing, pp 21–37. https://doi.org/10.1007/978-3-319-46448-0_2/FIGURES/5

  37. Liu B, Zhao W, Sun Q (2017) Study of object detection based on Faster R-CNN. 2017 Chinese Automation Congress (CAC), 2017-January, 6233–6236. https://doi.org/10.1109/CAC.2017.8243900

  38. Liu D, Wang Y, Chen T, Matson ET (2020a) Accurate lane detection for self-driving cars: An approach based on color filter adjustment and k-means clustering filter. Int J Semantic Comput 14(1):153–168. https://doi.org/10.1142/S1793351X20500038

    Article  Google Scholar 

  39. Liu D, Cui Y, Cao Z, Chen Y (2020b) A large-scale simulation dataset: Boost the detection accuracy for special weather conditions

  40. Liu W, Ren G, Yu R, Guo S, Zhu J, Zhang L (2022) Image-Adaptive YOLO for object detection in adverse weather conditions. Proc AAAI Conf Artif Intell 36(2):1792–1800. https://doi.org/10.1609/AAAI.V36I2.20072

    Article  Google Scholar 

  41. Liu D, Liang J, Geng T, Loui A, Zhou T (2023) Tripartite feature enhanced pyramid network for dense prediction. IEEE Trans Image Process: A Publication of the IEEE Signal Processing Society 32:2678–2692. https://doi.org/10.1109/TIP.2023.3272826

    Article  ADS  Google Scholar 

  42. Lu S, Wang B, Wang H, Chen L, Linjian M, Zhang X (2019) A real-time object detection algorithm for video. Comput Electr Eng 77:398–408. https://doi.org/10.1016/J.COMPELECENG.2019.05.009

    Article  Google Scholar 

  43. Ma Y, Wang Z, Yang H, Yang L (2020a) Artificial intelligence applications in the development of autonomous vehicles: A survey. IEEE/CAA J Autom Sin 7(2):315–329. https://doi.org/10.1109/JAS.2020.1003021

    Article  Google Scholar 

  44. Mai NAM, Duthon P, Khoudour L, Crouzil A, Velastin SA (2021) 3D object detection with SLS-fusion network in foggy weather conditions. Sensors 21(20):6711

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  45. Mandal S, Biswas S, Balas VE, Shaw RN, Ghosh A (2021) Lyft 3D object detection for autonomous vehicles. In: Artificial Intelligence for Future Generation Robotics. Elsevier, pp 119–136. https://doi.org/10.1016/B978-0-323-85498-6.00003-4

    Chapter  Google Scholar 

  46. Manikandan TD (2020) Self Driving Car. International Journal of Psychosocial. Rehabilitation 24(5):380–388. https://doi.org/10.37200/IJPR/V24I5/PR201704

    Article  Google Scholar 

  47. Maqsood MH, Mumtaz R, Haq IU, Shafi U, Zaidi SMH, Hafeez M (2021) Super resolution generative adversarial network (Srgans) for wheat stripe rust classification. Sensors 21(23):7903. https://doi.org/10.3390/s21237903

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  48. Martínez-Díaz M, Soriguera F (2018) Autonomous vehicles: Theoretical and practical challenges. Transp Res Procedia 33:275–282. https://doi.org/10.1016/j.trpro.2018.10.103

    Article  Google Scholar 

  49. Mertz C, Navarro-Serment LE, MacLachlan R, Rybski P, Steinfeld A, Suppé A, Urmson C, Vandapel N, Hebert M, Thorpe C, Duggins D, Gowdy J (2013) Moving object detection with laser scanners. J Field Robot 30(1):17–43. https://doi.org/10.1002/rob.21430

    Article  Google Scholar 

  50. Mester G (2022) Autonomous Robotic Self-Driving Cars 2021 Cybersecurity View project Self-Driving Cars View project. https://doi.org/10.13140/RG.2.2.26605.26081

  51. Meyer J, Becker H, Bösch PM, Axhausen KW (2017) Autonomous vehicles: The next jump in accessibilities? Res Transp Econ 62:80–91. https://doi.org/10.1016/j.retrec.2017.03.005

    Article  Google Scholar 

  52. Naveenkumar A, Akilandeswari J (2022) Deep learning algorithms for object detection—a study. Smart Innov Syst Technol 267:65–75. https://doi.org/10.1007/978-981-16-6616-2_7

    Article  Google Scholar 

  53. Nguyen VD, Tran DD, Tran MM, Nguyen NM, Nguyen VC (2020) Robust vehicle detection under adverse weather conditions using auto-encoder feature. Int J Machine Learn Comput 10(4):549–555. https://doi.org/10.18178/ijmlc.2020.10.4.971

    Article  Google Scholar 

  54. Niclass C, Inoue D, Matsubara H, Ichikawa T, Soga M (2015) Development of automotive LIDAR. Electron Commun Jpn 98(5):28–33. https://doi.org/10.1002/ECJ.11672

    Article  Google Scholar 

  55. Ondruš J, Kolla E, Vertaľ P, Šarić Ž (2020) How do autonomous cars work? Transp Res Procedia 44:226–233. https://doi.org/10.1016/j.trpro.2020.02.049

    Article  Google Scholar 

  56. Owais S, Chishti A, Riaz S, Zaib MB, Nauman M (2018) Self-driving cars using CNN and Q-Learning; Self-Driving Cars Using CNN and Q-Learning. In: 2018 IEEE 21st International Multi-Topic Conference (INMIC)

  57. Parekh D, Poddar N, Rajpurkar A, Chahal M, Kumar N, Joshi GP, Cho W (2022) A review on autonomous vehicles: Progress, methods and challenges. electronics (Switzerland) 11(14). https://doi.org/10.3390/electronics11142162

  58. Pendleton SD, Andersen H, Du X, Shen X, Meghjani M, Eng YH, Rus D, Ang MH (2017) Perception, planning, control, and coordination for autonomous vehicles. Machines 5(1):6. https://doi.org/10.3390/MACHINES5010006

    Article  Google Scholar 

  59. Pisarov J, Mester G (2021) The future of autonomous vehicles. FME Trans 49(1):29–35. https://doi.org/10.5937/FME2101029P

    Article  Google Scholar 

  60. Poczter SL, Jankovic LM (2014) The google car: Driving toward a better future? J Bus Case Stud-First Quarter 10(1):6

    Google Scholar 

  61. Qian K, Zhu S, Zhang X, Li LE (2021) Robust multimodal vehicle detection in foggy weather using complementary lidar and radar signals. Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR), 444–453

  62. Rath S, Kukil (2022) YOLOv7 Paper explanation: Object detection and YOLOv7 Pose. https://learnopencv.com/yolov7-object-detection-paper-explanation-and-inference/. Accessed 29 Sept 2022

  63. Raza M (2018) Autonomous vehicles: Levels, technologies, impacts and concerns. Int J Appl Eng Res 13:12710–12714 http://www.ripublication.com

    Google Scholar 

  64. Redmon J, Divvala S, Girshick R, Farhadi A (2015) You only look once: Unified, Real-time object detection. Proceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2016-December, 779–788. https://doi.org/10.48550/arxiv.1506.02640

  65. Russell BC, Torralba A, Murphy KP, Freeman WT (2005) LabelMe: a database and web-based tool for image annotation. Int J Comput Vis 77:157–173

    Article  Google Scholar 

  66. Salesky B (2017) A Decade after DARPA: our view on the state of the art in self-driving cars. Argo AI. https://medium.com/self-driven/a-decade-after-darpa-our-view-on-the-state-of-the-art-in-self-driving-cars-3e8698e6afe8

  67. Sharma T, Debaque B, Duclos N, Chehri A, Kinder B, Fortier P (2022) Deep learning-based object detection and scene perception under bad weather conditions. Electronics (Switzerland) 11(4):563. https://doi.org/10.3390/ELECTRONICS11040563/S1

    Article  Google Scholar 

  68. Shinde S, Kothari A, Gupta V (2018) YOLO based human action recognition and localization. Procedia Computer Science 133:831–838. https://doi.org/10.1016/j.procs.2018.07.112

    Article  Google Scholar 

  69. Singh S, Saini BS (2021) Autonomous cars: Recent developments, challenges, and possible solutions. IOP Conf Ser: Mater Sci Eng 1022(1):012028. https://doi.org/10.1088/1757-899X/1022/1/012028

    Article  MathSciNet  Google Scholar 

  70. Song R, Wetherall J, Maskell S, Ralph JF (2020) Weather effects on obstacle detection for autonomous car. In: Proceedings of the 6th International Conference on Vehicle Technology and Intelligent Transport Systems (VEHITS). Scitepress-Science and Technology Publications, pp 331–341

  71. Sundararajan S, Zohdy I, Hamilton BA (2016) Vehicle automation and weather: Challenges and opportunities. https://rosap.ntl.bts.gov/view/dot/32494. Accessed 29 Sept 2022

  72. Tinto R (2017) Rio Tinto to expand autonomous fleet as part of $5 billion productivity drive. https://www.riotinto.com/en/news/releases/Autonomous-fleet-to-expand. Accessed 29 Sept 2022

  73. Todd L (2020) Autonomous vehicle implementation predictions: Implications for transport planning. Transportation Research Board Annual Meeting, 42(5 June 2020), 1–39. https://www.vtpi.org/avip.pdf

  74. Tumas P, Serackis A, Nowosielski A (2021) Augmentation of severe weather impact to far-infrared sensor images to improve pedestrian detection system. Electronics (Switzerland) 10(8):934. https://doi.org/10.3390/ELECTRONICS10080934

    Article  Google Scholar 

  75. van Uytsel S (2021) Testing autonomous vehicles on public roads: Facilitated by a series of alternative, often soft, legal instruments. Perspectives in Law, Business and Innovation, 39–64. https://doi.org/10.1007/978-981-15-9255-3_3

  76. Vargas J, Alsweiss S, Toker O, Razdan R, Santos J (2021) An overview of autonomous vehicles sensors and their vulnerability to weather conditions. Sensors (Basel, Switzerland) 21(16):5397. https://doi.org/10.3390/S21165397

    Article  ADS  PubMed  Google Scholar 

  77. Vattem T, Sebastian G, Lukic L (2022) Rethinking LiDAR object detection in adverse weather conditions. Proceedings - IEEE International Conference on Robotics and Automation, 5093–5099. https://doi.org/10.1109/ICRA46639.2022.9812039

  78. Vu T-D (2010) Vehicle perception: Localization, map** with detection, classification and tracking of moving objects. https://tel.archives-ouvertes.fr/tel-00454238

  79. Wang CC, Thorpe C, Thrun S, Hebert M, Durrant-Whyte H (2007) Simultaneous localization, map** and moving object tracking.  Int J Robot Res 26(9):889–916

  80. Wang X, Yu K, Wu S, Gu J, Liu Y, Dong C, ... Change Loy C (2018) ESRGAN: Enhanced super-resolution generative adversarial networks. In: Proceedings of the Europeanconference on computer vision (ECCV) workshops, pp 0–0. http://arxiv.org/abs/1809.00219

  81. Wang CY, Bochkovskiy A, Liao HYM (2020) Scaled-YOLOv4: Scaling cross stage partial network. In: Proceedings of the IEEE/CVF conference on computer vision and pattern recognition, pp 13029–13038

  82. Wang CY, Bochkovskiy A, Liao HYM (2022a) YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp 7464–7475

  83. Wang W, Liang J, Liu D (2022b) Learning equivariant segmentation with instance-unique querying supplementary material

  84. World Meteorological Organization (2022) Sand and Dust Storms. https://public.wmo.int/en/our-mandate/focus-areas/environment/sand-and-dust-storms. Accessed 29 Oct 2022

  85. Yao J, Fan X, Li B, Qin W (2022) Adverse weather target detection algorithm based on adaptive color levels and improved YOLOv5. Sensors 22(21):8577. https://doi.org/10.3390/s22218577

    Article  ADS  PubMed  PubMed Central  Google Scholar 

  86. Yoneda K, Suganuma N, Yanase R, Aldibaja M (2019) Automated driving recognition technologies for adverse weather conditions. IATSS Res 43(4):253–262. https://doi.org/10.1016/j.iatssr.2019.11.005

    Article  Google Scholar 

  87. Zang S, Ding M, Smith D, Tyler P (2019b) The impact of adverse weather conditions on autonomous vehicles: How rain, snow, fog, and hail affect the performance of a self-driving car. IEEE Veh Technol Mag 14(2):103–111. https://doi.org/10.1109/MVT.2019.2892497

    Article  Google Scholar 

  88. Zhang H, Li F, Liu S, Zhang L, Su H, Zhu J, Ni L, Shum HY (2022) DINO: DETR with improved denoising anchor boxes for end-to-end object detection. ar**v preprint ar**v:2203.03605

  89. Zhang Y, Carballo A, Yang H, Takeda K (2023) Perception and sensing for autonomous vehicles under adverse weather conditions: A survey. ISPRS J Photogramm Remote Sens 196:146–177. https://doi.org/10.1016/J.ISPRSJPRS.2022.12.021

    Article  ADS  Google Scholar 

  90. Zhao X, Salako K, Strigini L, Robu V, Flynn D (2020) Assessing safety-critical systems from operational testing: A study on autonomous vehicles. Inf Softw Technol 128:106393. https://doi.org/10.1016/J.INFSOF.2020.106393

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Solomon Mensah.

Ethics declarations

Ethics approval

Not applicable.

Consent to participate

Both authors agreed to participate in this research.

Consent for publication

Both authors have agreed to publish this article.

Conflict of interests

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Appiah, E.O., Mensah, S. Object detection in adverse weather condition for autonomous vehicles. Multimed Tools Appl 83, 28235–28261 (2024). https://doi.org/10.1007/s11042-023-16453-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-023-16453-z

Keywords

Navigation