Improving Autonomous Vehicles Safety in Snow Weather Using Federated YOLO CNN Learning

  • Conference paper
  • First Online:
Mobile Web and Intelligent Information Systems (MobiWIS 2021)

Abstract

Accurate object detection (e.g., buildings, vehicles, road signs and pedestrians) is essential to the success of the idea of autonomous and self-driving cars. Various object detection techniques have been proposed to enable Autonomous Vehicles (AVs) to achieve reliable safe driving. Most of these techniques are adequate for normal weather conditions, such as sunny or overcast days, but their effectiveness drops when they are exposed to inclement weather conditions, such as days with heavy snowfall or foggy days. In this paper, we propose an object detection system over AVs that capitalizes on the You Only Look Once (YOLO) emerging convolutional neural network (CNN) approach, together with a Federated Learning (FL) framework with the aim of improving the detection accuracy in adverse weather circumstances in real-time. We validate our system on the Canadian Adverse Driving Conditions (CADC) dataset. Experiments show that our solution achieves better performance than traditional solutions (i.e. Gossip decentralized model, and Centralized model).

Supported by NSERC and Innovation for Defence Excellence and Security (IDEaS), The Department of National Defence, Canada.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
EUR 29.95
Price includes VAT (Germany)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
EUR 42.79
Price includes VAT (Germany)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
EUR 53.49
Price includes VAT (Germany)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free ship** worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    https://cadcd.uwaterloo.ca.

References

  1. Amiri, M.M., Gündüz, D.: Machine learning at the wireless edge: distributed stochastic gradient descent over-the-air. IEEE Trans. Sig. Process. 68, 2155–2169 (2020)

    Article  MathSciNet  Google Scholar 

  2. Cui, J., Wen, J., Han, S., Zhong, H.: Efficient privacy-preserving scheme for real-time location data in vehicular ad-hoc network. IEEE Internet Things J. 5(5), 3491–3498 (2018)

    Article  Google Scholar 

  3. Drawel, N., Bentahar, J., Laarej, A., Rjoub, G.: Formalizing group and propagated trust in multi-agent systems. In: Bessiere, C. (ed.) Proceedings of the Twenty-Ninth International Joint Conference on Artificial Intelligence, IJCAI, pp. 60–66 (2020)

    Google Scholar 

  4. Drawel, N., Bentahar, J., Qu, H.: Computationally grounded quantitative trust with time. In: Seghrouchni, A.E.F., Sukthankar, G., An, B., Yorke-Smith, N. (eds.) Proceedings of the 19th International Conference on Autonomous Agents and Multiagent Systems, AAMAS, Auckland, New Zealand, May 9–13, pp. 1837–1839. International Foundation for Autonomous Agents and Multiagent Systems (2020)

    Google Scholar 

  5. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? the kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  6. Jhung, J., Bae, I., Moon, J., Kim, T., Kim, J., Kim, S.: End-to-end steering controller with CNN-based closed-loop feedback for autonomous vehicles. In: 2018 IEEE Intelligent Vehicles Symposium (IV), pp. 617–622. IEEE (2018)

    Google Scholar 

  7. Kong, Q., Yin, F., Lu, R., Li, B., Wang, X., Cui, S., Zhang, P.: Privacy-preserving aggregation for federated learning-based navigation in vehicular fog. IEEE Transactions on Industrial Informatics (2021)

    Google Scholar 

  8. Lim, H.K., Kim, J.B., Kim, C.M., Hwang, G.Y., Choi, H.b., Han, Y.H.: Federated reinforcement learning for controlling multiple rotary inverted pendulums in edge computing environments. In: 2020 International Conference on Artificial Intelligence in Information and Communication (ICAIIC), pp. 463–464. IEEE (2020)

    Google Scholar 

  9. Obaidat, M., Khodjaeva, M., Holst, J., Ben Zid, M.: Security and privacy challenges in vehicular ad hoc networks. In: Mahmood, Z. (ed.) Connected Vehicles in the Internet of Things, pp. 223–251. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-36167-9_9

    Chapter  Google Scholar 

  10. World Health Organization et al.: Global status report on road safety 2018: Summary. World Health Organization. Technical Report (2018)

    Google Scholar 

  11. Ouyang, Z., Niu, J., Liu, Y., Guizani, M.: Deep CNN-based real-time traffic light detector for self-driving vehicles. IEEE Trans. Mob. Comput. 19(2), 300–313 (2019)

    Article  Google Scholar 

  12. Pitropov, M., Garcia, D., Rebello, J., Smart, M., Wang, C., Czarnecki, K., Waslander, S.: Canadian adverse driving conditions dataset (2020)

    Google Scholar 

  13. Pitropov, M., et al.: Canadian adverse driving conditions dataset. Int. J. Robot. Res. 40(4–5), 681–690 (2021)

    Article  Google Scholar 

  14. Pokhrel, S.R., Choi, J.: Improving TCP performance over wiFi for internet of vehicles: a federated learning approach. IEEE Trans. Veh. Technol. 69(6), 6798–6802 (2020)

    Article  Google Scholar 

  15. Posner, J., Tseng, L., Aloqaily, M., Jararweh, Y.: Federated learning in vehicular networks: opportunities and solutions. IEEE Network 35(2), 152–159 (2021)

    Article  Google Scholar 

  16. Ramos, S., Gehrig, S., **gera, P., Franke, U., Rother, C.: Detecting unexpected obstacles for self-driving cars: fusing deep learning and geometric modeling. In: 2017 IEEE Intelligent Vehicles Symposium (IV), pp. 1025–1032. IEEE (2017)

    Google Scholar 

  17. Redmon, J., Divvala, S., Girshick, R., Farhadi, A.: You only look once: unified, real-time object detection. In: Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 779–788 (2016)

    Google Scholar 

  18. Rjoub, G., Bentahar, J., Wahab, O.A.: BigTrustScheduling: Trust-aware big data task scheduling approach in cloud computing environments. Future Gener. Comput. Syst. 110, 1079–1097 (2020)

    Article  Google Scholar 

  19. Rjoub, G., Abdel Wahab, O., Bentahar, J., Bataineh, A.: A trust and energy-aware double deep reinforcement learning scheduling strategy for federated learning on IoT devices. In: Kafeza, E., Benatallah, B., Martinelli, F., Hacid, H., Bouguettaya, A., Motahari, H. (eds.) ICSOC 2020. LNCS, vol. 12571, pp. 319–333. Springer, Cham (2020). https://doi.org/10.1007/978-3-030-65310-1_23

    Chapter  Google Scholar 

  20. Sami, H., Mourad, A., Otrok, H., Bentahar, J.: Demand-driven deep reinforcement learning for scalable fog and service placement. IEEE Transactions on Services Computing. In Press (2021). https://doi.org/10.1109/TSC.2021.3075988

  21. Sami, H., Otrok, H., Bentahar, J., Mourad, A.: AI-based resource provisioning of IoE services in 6G: a deep reinforcement learning approach. IEEE Transactions on Network and Service Management. In Press (2021). https://doi.org/10.1109/TNSM.2021.3066625

  22. Wahab, O.A., Mourad, A., Otrok, H., Taleb, T.: Federated machine learning: Survey, multi-level classification, desirable criteria and future directions in communication and networking systems. IEEE Commun. Surv. Tutorials 23(2), 1342–1397 (2021)

    Article  Google Scholar 

  23. Wu, W., He, L., Lin, W., Mao, R.: Accelerating federated learning over reliability-agnostic clients in mobile edge computing systems. IEEE Trans. Parallel Distrib. Syst. 32(7), 1539–1551 (2020)

    Google Scholar 

  24. **e, G., Shangguan, A., Fei, R., Ji, W., Ma, W., Hei, X.: Motion trajectory prediction based on a CNN-LSTM sequential model. Sci. China Inf. Sci. 63(11), 1–21 (2020). https://doi.org/10.1007/s11432-019-2761-y

    Article  Google Scholar 

  25. Ye, D., Yu, R., Pan, M., Han, Z.: Federated learning in vehicular edge computing: a selective model aggregation approach. IEEE Access 8, 23920–23935 (2020)

    Article  Google Scholar 

  26. Ye, Y., Li, S., Liu, F., Tang, Y., Hu, W.: EdgeFed: optimized federated learning based on edge computing. IEEE Access 8, 209191–209198 (2020)

    Article  Google Scholar 

  27. Yu, Z., Hu, J., Min, G., Zhao, Z., Miao, W., Hossain, M.S.: Mobility-aware proactive edge caching for connected vehicles using federated learning. IEEE Transactions on Intelligent Transportation Systems (2020)

    Google Scholar 

  28. Zhang, D., Ge, H., Zhang, T., Cui, Y.Y., Liu, X., Mao, G.: New multi-hop clustering algorithm for vehicular ad hoc networks. IEEE Trans. Intell. Trans. Syst. 20(4), 1517–1530 (2018)

    Article  Google Scholar 

  29. Zhang, J., Zhao, Y., Wang, J., Chen, B.: FedMEC: improving efficiency of differentially private federated learning via mobile edge computing. Mob. Netw. Appl. 25(6), 2421–2433 (2020)

    Article  Google Scholar 

  30. Zhao, Z.Q., Zheng, P., Xu, S.T., Wu, X.: Object detection with deep learning: a review. IEEE Trans. Neural Netw. Learn. Syst. 30(11), 3212–3232 (2019)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamal Bentahar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Switzerland AG

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Rjoub, G., Wahab, O.A., Bentahar, J., Bataineh, A.S. (2021). Improving Autonomous Vehicles Safety in Snow Weather Using Federated YOLO CNN Learning. In: Bentahar, J., Awan, I., Younas, M., Grønli, TM. (eds) Mobile Web and Intelligent Information Systems. MobiWIS 2021. Lecture Notes in Computer Science(), vol 12814. Springer, Cham. https://doi.org/10.1007/978-3-030-83164-6_10

Download citation

  • DOI: https://doi.org/10.1007/978-3-030-83164-6_10

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-030-83163-9

  • Online ISBN: 978-3-030-83164-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics

Navigation