Log in

Interactive segmentation of texture image based on active contour model with local inverse difference moment feature

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

Texture image segmentation is a challenging problem in image processing field due to wide variability of characterizing textures and a lack of proper contour information. In this paper, an effective presentation is found with which different textures can be represented with some corresponding distributions generated by feature values of local inverse difference moment (LIDM). By the analysis of local statistical information in gray level co-occurrence matrix (GLCM), we found that similar textures can be characterized with similar distributions. In this way, an interactive segmentation method is presented to achieve the segmentation of texture image based on GLCM with an optimizing model. Our scheme can be narrated separately as follows, firstly, a proper Gaussian kernel is selected to discriminate two classes of textures by analyzing LIDM feature distributions, which are obtained from two different local regions marked manually in the initial texture image. Secondly, the LIDM feature map can be constructed by computing LIDM feature values of image patches with the proper Gaussian kernel, and the center of these image patches may traverse the whole image domain. Finally, the texture image segmentation is implemented based on an improved optimizing model with local binary fitting and local extremum regularizing. In order to validate the performance of our proposed method, two kinds of experiments about discriminative feature map construction and texture image segmentation are carried out to demonstrate its well performance, and more experiments on real texture images are also conducted.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. Ahonen T, Pietikäinen M (2009) Image description using joint distribution of filter bank responses. Pattern Recogn Lett 30(4):368–376

    Article  Google Scholar 

  2. Ali S, Madabhushi A (2012) An integrated region-, boundary-, shape-based active contour for multiple object overlap resolution in histological imagery. IEEE Trans Med Imag 31(7):1448–1460

    Article  Google Scholar 

  3. Chan TF, Vese LA (2001) Active contours without edges. IEEE Trans Image Process 10(2):266–277

    Article  MATH  Google Scholar 

  4. Chan TF, Sandberg BY, Vese LA (2000) Active contours without edges for vector-valued images. J Vis Commun Image Represent 11(2):130–141

    Article  Google Scholar 

  5. Chan TF, Esedoglu S, Nikolova M (2006) Algorithms for finding global minimizers of image segmentation and denoising models. SIAM J Appl Math 66 (5):1632–1648

    Article  MathSciNet  MATH  Google Scholar 

  6. Clausi DA, Deng H (2005) Design-based texture feature fusion using gabor filters and co-occurrence probabilities. IEEE Trans Image Process 14(7):925–936

    Article  Google Scholar 

  7. Cui J, Liu Y, Xu Y, Zhao H, Zha H (2013) Tracking generic human motion via fusion of low- and high-dimensional approaches. IEEE Trans Syst Man Cybern Syst Hum 43(4):996–1002

    Article  Google Scholar 

  8. de Siqueira FR, Schwartz WR, Pedrini H (2013) Multi-scale gray level co-occurrence matrices for texture description. Neurocomputing 120:336–345

    Article  Google Scholar 

  9. Haralick RM (1979) Statistical and structural approaches to texture. Proc IEEE 67(5):786–804

    Article  Google Scholar 

  10. Haralick RM, Shanmugam K (1973) Computer classification of reservoir sandstones. IEEE Trans Geosci Electron 11(4):171–177

    Article  Google Scholar 

  11. Haralick RM, Shanmugam K, Dinstein I (1973) Textural features for image classification. IEEE Trans Syst Man Cybern 3(6):610–621

    Article  Google Scholar 

  12. Ji S, Xu W, Yang M, Yu K (2012) 3d convolutional neural networks for human action recognition. IEEE Trans Pattern Anal Mach Intell 35(1):221–231

    Article  Google Scholar 

  13. Kass M, Witkin A, Terzopoulos D (1988) Snakes: active contour models. Int J Comput Vis 1(4):321–331

    Article  MATH  Google Scholar 

  14. Li C, Xu C, Gui C, Fox MD (2005) Level set evolution without re-initialization: a new variational formulation. In: IEEE Conference on computer vision and pattern recognition, IEEE, vol 1, pp 430–436

  15. Li C, Kao CY, Gore JC, Ding Z (2007) Implicit active contours driven by local binary fitting energy. In: IEEE Conference on Computer Vision and Pattern Recognition, IEEE, pp 1–7

  16. Li C, Kao CY, Gore JC, Ding Z (2008) Minimization of region-scalable fitting energy for image segmentation. IEEE Trans Image Process 17(10):1940–1949

    Article  MathSciNet  MATH  Google Scholar 

  17. Lianantonakis M, Petillot YR (2007) Sidescan sonar segmentation using texture descriptors and active contours. IEEE J Ocean Eng 32(3):744–752

    Article  Google Scholar 

  18. Liu L, Lao S, Fieguth PW, Guo Y, Wang X, Pietikäinen M (2016) Median robust extended local binary pattern for texture classification. IEEE Trans Image Process 25(3):1368–1381

    Article  MathSciNet  Google Scholar 

  19. Liu L, Cheng D, Tian F, Shi D, Wu R (2017) Active contour driven by multi-scale local binary fitting and Kullback-Leibler divergence for image segmentation. Multimed Tool Appl 76(7):10,149–10,168

    Article  Google Scholar 

  20. Liu Y, Nie L, Han L, Zhang L, Rosenblum DS (2015) Action2activity: recognizing complex activities from sensor data. In: International Conference on Artificial Intelligence, pp 1617–1623

  21. Liu Y, Nie L, Liu L, Rosenblum DS (2016) From action to activity: sensor-based activity recognition. Neurocomputing 181:108–115

    Article  Google Scholar 

  22. Lu J, Wang G, Pan Z (2017) Nonlocal active contour model for texture segmentation. Multimed Tool Appl 76(8):10,991–11,001

    Article  Google Scholar 

  23. Ojala T, Pietikäinen M, Mäenpää T (2000) Gray scale and rotation invariant texture classification with local binary patterns. In: European Conference on Computer Vision. Springer, pp 404–420

  24. Ojala T, Pietikainen M, Maenpaa T (2002) Multiresolution gray-scale and rotation invariant texture classification with local binary patterns. IEEE Trans Pattern Anal Mach Intell 24(7):971–987

    Article  MATH  Google Scholar 

  25. Osher S, Sethian JA (1988) Fronts propagating with curvature-dependent speed: algorithms based on hamilton-jacobi formulations. J Comput Phys 79(1):12–49

    Article  MathSciNet  MATH  Google Scholar 

  26. Paragios N, Deriche R (2002) Geodesic active regions and level set methods for supervised texture segmentation. Int J Comput Vis 46(3):223–247

    Article  MATH  Google Scholar 

  27. Ronfard R (1994) Region-based strategies for active contour models. Int J Comput Vis 13(2):229–251

    Article  Google Scholar 

  28. Samson C, Blanc-Féraud L, Aubert G, Zerubia J (2000) A variational model for image classification and restoration. IEEE Trans Pattern Anal Mach Intell 22(5):460–472

    Article  MATH  Google Scholar 

  29. Wang T, Chen Y, Qiao M, Snoussi H (2017) A fast and robust convolutional neural network-based defect detection model in product quality control. Int J Adv Manuf Technol (5-8):1–7

  30. Wang T, Qiao M, Zhu A, Niu Y, Li C, Snoussi H (2017) Abnormal event detection via covariance matrix for optical flow based feature. Multimed Tool Appl (3):1–21

  31. Wu Q, An J, Lin B (2012) A texture segmentation algorithm based on pca and global minimization active contour model for aerial insulator images. IEEE J Selected Topics Appl Earth Obs Remote Sens 5(5):1509–1518

    Article  Google Scholar 

  32. Wu Q, Gan Y, Lin B, Zhang Q, Chang H (2015) An active contour model based on fused texture features for image segmentation. Neurocomputing 151:1133–1141

    Article  Google Scholar 

  33. Xu L, Yan Q, **a Y, Jia J (2012) Structure extraction from texture via relative total variation. ACM Trans Graph 31(6):139

    Google Scholar 

  34. Zhang K, Song H, Zhang L (2010) Active contours driven by local image fitting energy. Pattern Recogn 43(4):1199–1206

    Article  MATH  Google Scholar 

  35. Zhao ZQ, Huang DS, Sun BY (2004) Human face recognition based on multi-features using neural networks committee. Pattern Recogn Lett 25(12):1351–1358

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported in part by National Nature Science Foundation of China (Grant Nos. 61731001 and U1435220), the Bei**g Science and Technology Project of China (Grant No. D16110400130000-D161100001316001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guo Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, G., Qin, S. & Wang, D. Interactive segmentation of texture image based on active contour model with local inverse difference moment feature. Multimed Tools Appl 77, 24537–24564 (2018). https://doi.org/10.1007/s11042-018-5777-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11042-018-5777-z

Keywords

Navigation