Log in

Accurate image reconstruction by separable krawtchouk-charlier moments with automatic parameter selection using artificial bee colony optimization

  • Published:
Multimedia Tools and Applications Aims and scope Submit manuscript

Abstract

The feature extraction process involves identifying and extracting relevant features from specific data. However, in most cases, this data can be a set of images. In fact, one of the most commonly used techniques for image analysis are orthogonal moments. This paper introduces a new 2-dimensional separable moment named optimized Krawtchouk-Charlier moments for image analysis. It should be noted that Krawtchouk and Charlier polynomials are parametric depends on p and \(a_1\)parameters respectively. Which means that the values of these parameters can directly affect image representation and reconstruction. For this reason, parameter selection for this kind of orthogonal moments is a major issue that impedes the efficiency of modern orthogonal moment applications. So as to solve this problem, we propose a method that uses an artificial bee colony optimization algorithm. Selecting automatically the appropriate parameters for a specific order of moments and enhancing the presentation and reconstruction of digital images. Hence, proposed method is based on optimizing the normalized mean square reconstruction error. The performance of our method is tested using the reconstruction error of binary, gray-scale, and color images with varying moments’ order using separable discrete Krawtchouk-Charlier moments. Therefore, based on obtained results. This method offers optimal image reconstruction compared to manually selected parameters. In addition, this method gives great results when the image is translated or affected by noise. Where the optimization algorithm gives the best parameters p and \(a_1\), which makes the moment focus on the most important pixels in the image.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Algorithm 1
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

Data sharing not applicable to this article as no datasets were generated or analyzed during the current study.

References

  1. Jassim WA, Raveendran P, Mukundan R (2012) New orthogonal polynomials for speech signal and image processing. IET Signal Proc 6(8):713–723

    Article  MathSciNet  Google Scholar 

  2. Flusser J, Zitova B, Suk T (2009) Moments and moment invariants in pattern recognition. John Wiley & Sons, ???

  3. Hu M-K (1962) Visual pattern recognition by moment invariants. IRE Trans Inf Theory 8(2):179–187

    Article  Google Scholar 

  4. Kasgari AB, Safavi S, Nouri M, Hou J, Sarshar NT, Ranjbarzadeh R (2023) Point-of-interest preference model using an attention mechanism in a convolutional neural network. Bioeng 10(4):495. https://doi.org/10.3390/bioengineering10040495

    Article  Google Scholar 

  5. Anari S, Tataei Sarshar N, Mahjoori N, Dorosti S, Rezaie A (2022) Review of deep learning approaches for thyroid cancer diagnosis. Math Probl Eng 2022:1–8. https://doi.org/10.1155/2022/5052435

    Article  Google Scholar 

  6. Chong C-W, Raveendran P, Mukundan R (2004) Translation and scale invariants of legendre moments. Pattern Recogn 37(1):119–129

    Article  Google Scholar 

  7. Khotanzad A, Hong YH (1990) Invariant image recognition by zernike moments. IEEE Trans Pattern Anal Mach Intell 12(5):489–497

    Article  Google Scholar 

  8. Hosny KM (2011) Image representation using accurate orthogonal gegenbauer moments. Pattern Recogn Lett 32(6):795–804. https://doi.org/10.1016/j.patrec.2011.01.006

    Article  Google Scholar 

  9. Yap P-T, Paramesran R (2004) Jacobi moments as image features. In: 2004 IEEE Region 10 conference TENCON 2004, IEEE, pp. 594–597

  10. Kotoulas L, Andreadis I (2006) Fast computation of chebyshev moments. IEEE Trans Circuits Syst Video Technol 16(7):884–888

    Article  Google Scholar 

  11. Bourzik A, Bouikhalen B, El-Mekkaoui J, Hjouji A (2023) A comparative study and performance evaluation of discrete tchebichef moments for image analysis. In: Proceedings of the 6th international conference on networking, intelligent systems & security, pp 1–7. https://doi.org/10.1145/3607720.3607772

  12. Yap P-T, Paramesran R, Ong S-H (2003) Image analysis by krawtchouk moments. IEEE Trans Image Process 12(11):1367–1377. https://doi.org/10.1109/TIP.2003.818019

    Article  MathSciNet  Google Scholar 

  13. Asli BHS, Flusser J (2014) Fast computation of krawtchouk moments. Inf Sci 288:73–86. https://doi.org/10.1016/j.ins.2014.07.046

    Article  Google Scholar 

  14. Zhu H, Liu M, Li Y, Shu H, Zhang H (2011) Image description with nonseparable two-dimensional charlier and meixner moments. Int J Pattern Recognit Artif Intell 25(01):37–55. https://doi.org/10.1142/S0218001411008506

    Article  MathSciNet  Google Scholar 

  15. El Mallahi M, Zouhri A, El-Mekkaoui J, Qjidaa H (2017) Radial meixner moments for rotational invariant pattern recognition. In: 2017 Intelligent Systems and Computer Vision (ISCV), IEEE, pp. 1–6. https://doi.org/10.1109/ISACV.2017.8054943

  16. Zhou J, Shu H, Zhu H, Toumoulin C, Luo L (2005) Image analysis by discrete orthogonal hahn moments. In: International conference image analysis and recognition, Springer, pp 524–531. https://doi.org/10.1007/11559573_65

  17. Yap P-T, Paramesran R, Ong S-H (2007) Image analysis using hahn moments. IEEE Trans Pattern Anal Mach Intell 29(11):2057–2062. https://doi.org/10.1109/TPAMI.2007.70709

    Article  Google Scholar 

  18. Zhu H, Shu H, Zhou J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal dual hahn moments. Pattern Recogn Lett 28(13):1688–1704. https://doi.org/10.1016/j.patrec.2007.04.013

    Article  Google Scholar 

  19. Zhu H, Shu H, Liang J, Luo L, Coatrieux J-L (2007) Image analysis by discrete orthogonal racah moments. Signal Process 87(4):687–708. https://doi.org/10.1016/j.sigpro.2006.07.007

    Article  Google Scholar 

  20. Asli BHS, Flusser J (2017) New discrete orthogonal moments for signal analysis. Signal Process 141:57–73. https://doi.org/10.1016/j.sigpro.2017.05.023

    Article  Google Scholar 

  21. Fathi IS, Ahmed MA (2022) Makhlouf M (2022) An efficient computation of discrete orthogonal moments for bio-signals reconstruction. EURASIP J Adv Signal Process 1:104. https://doi.org/10.1186/s13634-022-00938-4

    Article  Google Scholar 

  22. Henz M, Koh S-H, Sounderraman S (2021) Teachable moments in functional audio processing. In: Proceedings of the 2021 ACM SIGPLAN international symposium on SPLASH-E, pp 65–70. https://doi.org/10.1145/3484272.3484967

  23. Wang X-Y, Ma T-X, Niu P-P (2011) A pseudo-zernike moment based audio watermarking scheme robust against desynchronization attacks. Comput Electr Eng 37(4):425–443. https://doi.org/10.1016/j.compeleceng.2011.05.011

    Article  Google Scholar 

  24. Bruna J, Mallat S (2013) Audio texture synthesis with scattering moments. ar**v:1311.0407

  25. Wu K, Garnier C, Coatrieux J-L, Shu H (2010) A preliminary study of moment-based texture analysis for medical images. In: 2010 Annual international conference of the IEEE engineering in medicine and biology, IEEE, pp 5581–5584. https://doi.org/10.1109/IEMBS.2010.5626789

  26. Bagherian Kasgari A, Ranjbarzadeh R, Caputo A, Baseri Saadi S, Bendechache M (2023) Brain tumor segmentation based on zernike moments, enhanced ant lion optimization, and convolutional neural network in mri images. In: Metaheuristics and optimization in computer and electrical engineering: vol 2. hybrid and improved algorithms, Springer, ??? pp 345–366. https://doi.org/10.1007/978-3-031-42685-8_10

  27. Ranjbarzadeh R, Zarbakhsh P, Caputo A, Tirkolaee EB, Bendechache M (2024) Brain tumor segmentation based on optimized convolutional neural network and improved chimp optimization algorithm. Comput Biol Med 168:107723. https://doi.org/10.1016/j.compbiomed.2023.107723

    Article  Google Scholar 

  28. Srivastava D, Wadhvani R, Gyanchandani M (2015) A review: color feature extraction methods for content based image retrieval. Int J Comput Eng Manag 18(3):9–13

    Google Scholar 

  29. Zhu H (2012) Image representation using separable two-dimensional continuous and discrete orthogonal moments. Pattern Recogn 45(4):1540–1558. https://doi.org/10.1016/j.patcog.2011.10.002

    Article  Google Scholar 

  30. Idan ZN, Abdulhussain SH, Al-Haddad SAR (2020) A new separable moments based on tchebichef-krawtchouk polynomials. IEEE Access 8:41013–41025. https://doi.org/10.1109/ACCESS.2020.2977305

    Article  Google Scholar 

  31. Tahiri MA, Karmouni H, Azzayani A, Sayyouri M, Qjidaa H (2020) Fast 3d image reconstruction by separable moments based on hahn and krawtchouk polynomials. In: 2020 Fourth International Conference on Intelligent Computing in Data Sciences (ICDS), IEEE, pp 1–7

  32. Hmimid A, Sayyouri M, Qjidaa H (2014) Image classification using a new set of separable two-dimensional discrete orthogonal invariant moments. J Electron Imaging 23(1):013026–013026

    Article  Google Scholar 

  33. Sayyouri M, Hmimid A, Qjidaa H (2016) Image analysis using separable discrete moments of charlier-hahn. Multimed Tools Appl 75:547–571

    Article  Google Scholar 

  34. Karaboga D (2010) Artificial bee colony algorithm. Scholarpedia 5(3):6915

    Article  Google Scholar 

  35. Karaboga D, Akay B (2009) A comparative study of artificial bee colony algorithm. Appl Math Comput 214(1):108–132. https://doi.org/10.1016/j.amc.2009.03.090

    Article  MathSciNet  Google Scholar 

  36. Bansal JC, Sharma H, Jadon SS (2013) Artificial bee colony algorithm: a survey. Int J Adv Intell Paradigms 5(1–2):123–159

    Google Scholar 

  37. Teague MR (1980) Image analysis via the general theory of moments. Josa 70(8):920–930

    Article  MathSciNet  Google Scholar 

  38. Shu H, Zhang H, Chen B, Haigron P, Luo L (2010) Fast computation of tchebichef moments for binary and grayscale images. IEEE Trans Image Process 19(12):3171–3180. https://doi.org/10.1109/TIP.2010.2052276

    Article  MathSciNet  Google Scholar 

  39. Abdulhussain SH, Ramli AR, Al-Haddad SAR, Mahmmod BM, Jassim WA (2018) Fast recursive computation of krawtchouk polynomials. J Math Imaging Vision 60:285–303. https://doi.org/10.1007/s10851-017-0758-9

    Article  MathSciNet  Google Scholar 

  40. Yamni M, Daoui A, Karmouni H, Sayyouri M, Qjidaa H et al (2019) Influence of krawtchouk and charlier moment’s parameters on image reconstruction and classification. Procedia Computer Sci 148:418–427. https://doi.org/10.1016/j.procs.2019.01.054

    Article  Google Scholar 

  41. Dunkl CF, Xu Y (2014) Orthogonal polynomials of several variables vol 155. Cambridge University Press, ???

  42. Tsougenis E, Papakostas GA, Koulouriotis DE (2013) Introducing the separable moments for image watermarking in a tottaly moment-oriented framework. In: 2013 18th International Conference on Digital Signal Processing (DSP), IEEE, pp 1–6. https://doi.org/10.1109/ICDSP.2013.6622813

  43. Tsougenis E, Papakostas GA, Koulouriotis DE (2015) Image watermarking via separable moments. Multimedia Tools and Applications 74:3985–4012. https://doi.org/10.1007/s11042-013-1808-y

  44. Idan ZN, Abdulhussain SH, Mahmmod BM, Al-Utaibi KA, Al-Hadad SAR, Sait SM (2021) Fast shot boundary detection based on separable moments and support vector machine. IEEE Access 9:106412–106427. https://doi.org/10.1109/ACCESS.2021.3100139

    Article  Google Scholar 

  45. Hjouji A, El-Mekkaoui J, Qjidaa H (2021) New set of non-separable 2d and 3d invariant moments for image representation and recognition. Multimed Tools Appl 80(8):12309–12333. https://doi.org/10.1007/s11042-020-10356-z

    Article  Google Scholar 

  46. Tahiri MA, Bencherqui A, Karmouni H, Jamil MO, Sayyouri M, Qjidaa H (2022) Optimal 3d object reconstruction and classification by separable moments via the firefly algorithm. In: 2022 International Conference on Intelligent Systems and Computer Vision (ISCV), IEEE, pp 1–8. https://doi.org/10.1109/ISCV54655.2022.9806106

  47. Bencherqui A, Tahiri MA, Karmouni H, Daoui A, Alfidi M, Jamil MO, Qjidaa H, Sayyouri M (2022) Optimization of meixner moments by the firefly algorithm for image analysis. In: International conference on digital technologies and applications, Springer, pp 439–448

  48. Bencherqui A, Daoui A, Karmouni H, Qjidaa H, Alfidi M, Sayyouri M (2022) Optimal reconstruction and compression of signals and images by hahn moments and artificial bee colony (abc) algorithm. Multimed Tools Appl 81(21):29753–29783

    Article  Google Scholar 

  49. Boros G, Moll V (2004) Irresistible integrals: symbolics, analysis and experiments in the evaluation of integrals. Cambridge University Press, ???

  50. Zhu H, Liu M, Shu H, Zhang H, Luo L (2010) General form for obtaining discrete orthogonal moments. IET Image Proc 4(5):335–352. https://doi.org/10.1049/iet-ipr.2009.0195

    Article  MathSciNet  Google Scholar 

  51. Abdul-Hadi AM, Abdulhussain SH, Mahmmod BM (2020) On the computational aspects of charlier polynomials. Cogent Eng 7(1):1763553. https://doi.org/10.1080/23311916.2020.1763553

    Article  Google Scholar 

  52. Mukundan R, Ong S, Lee PA (2001) Image analysis by tchebichef moments. IEEE Trans Image Process 10(9):1357–1364. https://doi.org/10.1109/83.941859

    Article  MathSciNet  Google Scholar 

  53. Rivera-Lopez JS, Camacho-Bello C, Gutiérrez-Lazcano L, Papakostas G (2021) Computation of 2d and 3d high-order discrete orthogonal moments. In: Recent progress in image moments and moment invariants, vol 7. Science Gate Publishing, ??? pp 53–74

  54. Rivera-Lopez JS, Camacho-Bello C, Gutiérrez-Lazcano L (2021) Computation of 2d and 3d high-order discrete orthogonal moments. In: Papakostas GA (ed) Recent progress in image moments and moment invariants, vol 7. Science Gate, ??? 53–74. https://sciencegatepub.com/sgp-books/gcsr/gcsr_vol7/

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdelati Bourzik.

Ethics declarations

Conflict of Interests

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourzik, A., Bouikhalene, B., El-Mekkaoui, J. et al. Accurate image reconstruction by separable krawtchouk-charlier moments with automatic parameter selection using artificial bee colony optimization. Multimed Tools Appl (2024). https://doi.org/10.1007/s11042-024-19664-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11042-024-19664-0

Keywords

Navigation