Log in

Fabrication and characterization of a novel hydrogel network composed of polyvinyl alcohol/polyvinylpyrrolidone/nano-rGO as wound dressing application

  • Original Paper
  • Published:
Journal of Polymer Research Aims and scope Submit manuscript

Abstract

Wound healing is a complicated and dynamic process, and its acceleration and improvement require the preparation of a desirable environment. Wound dressing is one of the most effective external agents in the process of wound healing. The objective of the present study is to investigate the physical, mechanical, and biological characteristics of nano-Reduced Graphene Oxide (nano-rGO)-reinforced polyvinyl alcohol/polyvinylpyrrolidone polymer network wound dressings. Using the Fourier-Transform Infrared (FTIR) spectroscopy, we have confirmed the existence of fumaric acid (FA) as the cross-linking agent by creating ester groups. Moreover, X-Ray Diffraction (XRD) analysis showed that adding nano-rGO and FA to the hydrogel structure created peaks at 2θ = 10º and 29.5º, respectively. Field emission scanning electron microscopy (FESEM) analysis showed the formation of a coating with a uniform structure and regular pores. In addition, elemental EDX analysis confirmed the uniform distribution of hydrogel film constituents in the wound dressing structure. The swelling test showed that increasing the amount of nano-rGO in wound dressings decreased the water absorption by 16.33 percent and decreased the Water Vapor transmittance Rate (WVTR) to 26.5 percent. The gel fraction test showed that all hydrogel films have a gel fraction of more than 95 percent. Cytotoxicity and inhibition zone tests on the produced wound dressings showed that by controlling the amount of nano-rGO, we could produce wound dressings with no toxicity on cells that demonstrate desirable antibacterial characteristics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Radmanesh S, Shabangiz S, Koupaei N, Hassanzadeh-Tabrizi S (2022) 3D printed bio polymeric materials as a new perspective for wound dressing and skin tissue engineering applications: a review. J Polym Res 29(2):1–25

    Article  Google Scholar 

  2. Salehi-Abari M, Koupaei N, Hassanzadeh-Tabrizi S (2020) Synthesis and Characterisation of semi-interpenetrating network of Polycaprolactone/polyethylene glycol diacrylate/zeolite-CuO as wound dressing. Mater Technol 35(5):290–299

    Article  CAS  Google Scholar 

  3. Bozoğlan BK, Duman O, Tunç S (2020) Preparation and characterization of thermosensitive chitosan/carboxymethylcellulose/scleroglucan nanocomposite hydrogels. Int J Biol Macromol 162:781–797

    Article  PubMed  Google Scholar 

  4. Polat TG, Duman O, Tunc S (2020) Agar/κ-carrageenan/montmorillonite nanocomposite hydrogels for wound dressing applications. Int J Biol Macromol 164:4591–4602

    Article  CAS  PubMed  Google Scholar 

  5. Bozoğlan BK, Duman O, Tunç S (2021) Smart antifungal thermosensitive chitosan/carboxymethylcellulose/scleroglucan/montmorillonite nanocomposite hydrogels for onychomycosis treatment. Colloids Surf Physicochem Eng Aspects 610:125600

    Article  Google Scholar 

  6. Huang M, Hou Y, Li Y, Wang D, Zhang L (2017) High performances of dual network PVA hydrogel modified by PVP using borax as the structure-forming accelerator. Des Monomers Polym 20(1):505–513

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Zhao L, Mitomo H, Zhai M, Yoshii F, Nagasawa N, Kume T (2003) Synthesis of antibacterial PVA/CM-chitosan blend hydrogels with electron beam irradiation. Carbohydr Polym 53(4):439–446

    Article  CAS  Google Scholar 

  8. Kamoun EA, Chen X, Mohy Eldin MS, Kenawy E-RS (2015) Crosslinked poly(vinyl alcohol) hydrogels for wound dressing applications: A review of remarkably blended polymers. Arab J Chem 8(1):1–14

    Article  CAS  Google Scholar 

  9. Hyon S-H, Cha W-I, Ikada Y, Kita M, Ogura Y, Honda Y (1994) Poly (vinyl alcohol) hydrogels as soft contact lens material. J Biomater Sci Polym Ed 5(5):397–406

    Article  CAS  PubMed  Google Scholar 

  10. Yang X, Liu Q, Chen X, Yu F, Zhu Z (2008) Investigation of PVA/ws-chitosan hydrogels prepared by combined γ-irradiation and freeze-thawing. Carbohydr Polym 73(3):401–408

    Article  CAS  Google Scholar 

  11. Muggli DS, Burkoth AK, Anseth KS (1999) Crosslinked polyanhydrides for use in orthopedic applications: degradation behavior and mechanics. J Biomed Mater Res Official J Soc Biomateri Jpn Soc Biomater Aust Soc Biomater 46(2):271–278

    Article  CAS  Google Scholar 

  12. Coviello T, Matricardi P, Marianecci C, Alhaique F (2007) Polysaccharide hydrogels for modified release formulations. J Controlled Release 119(1):5–24

    Article  CAS  Google Scholar 

  13. Yao L, Haas TW, Guiseppi-Elie A, Bowlin GL, Simpson DG, Wnek GE (2003) Electrospinning and stabilization of fully hydrolyzed poly (vinyl alcohol) fibers. Chem Mater 15(9):1860–1864

    Article  CAS  Google Scholar 

  14. Li Y, Yao S (2017) High stability under extreme condition of the poly (vinyl alcohol) nanofibers crosslinked by glutaraldehyde in organic medium. Polym Degradation Stab 137:229–237

    Article  CAS  Google Scholar 

  15. Li J, Li Y, Niu S, Liu J, Wang L (2017) Synthesis of a new “green” sponge via transesterification of dimethyl carbonate with polyvinyl alcohol and foaming approach. J Porous Mater 24(6):1595–1604

    Article  CAS  Google Scholar 

  16. Wu K, Song L, Wang Z, Hu Y (2008) Microencapsulation of ammonium polyphosphate with PVA–melamine–formaldehyde resin and its flame retardance in polypropylene. Polym Adv Technol 19(12):1914–1921

    Article  CAS  Google Scholar 

  17. Destaye AG, Lin C-K, Lee C-K (2013) Glutaraldehyde vapor cross-linked nanofibrous PVA mat with in situ formed silver nanoparticles. ACS Appl Mater Interfaces 5(11):4745–4752

    Article  CAS  PubMed  Google Scholar 

  18. Sonker AK, Tiwari N, Nagarale RK, Verma V (2016) Synergistic effect of cellulose nanowhiskers reinforcement and dicarboxylic acids crosslinking towards polyvinyl alcohol properties. J Polym Sci Part A Polym Chem 54(16):2515–2525

    Article  CAS  Google Scholar 

  19. Kurkuri MD, Aminabhavi TM (2004) Poly (vinyl alcohol) and poly (acrylic acid) sequential interpenetrating network pH-sensitive microspheres for the delivery of diclofenac sodium to the intestine. J Controlled Release 96(1):9–20

    Article  CAS  Google Scholar 

  20. Tang Y-F, Du Y-M, Hu X-W, Shi X-W, Kennedy JF (2007) Rheological characterisation of a novel thermosensitive chitosan/poly (vinyl alcohol) blend hydrogel. Carbohydr Polym 67(4):491–499

    Article  CAS  Google Scholar 

  21. Gohil J, Bhattacharya A, Ray P (2006) Studies on the crosslinking of poly (vinyl alcohol). J Polym Res 13(2):161–169

    Article  CAS  Google Scholar 

  22. Kariduraganavar MY, Kulkarni SS, Kittur AA (2005) Pervaporation separation of water–acetic acid mixtures through poly (vinyl alcohol)-silicone based hybrid membranes. J Membr Sci 246(1):83–93

    Article  CAS  Google Scholar 

  23. Prajapati G, Roshan R, Gupta P (2010) Effect of plasticizer on ionic transport and dielectric properties of PVA–H3PO4 proton conducting polymeric electrolytes. J Phys Chem Solids 71(12):1717–1723

    Article  CAS  Google Scholar 

  24. Yin Y, Li J, Liu Y, Li Z (2005) Starch crosslinked with poly (vinyl alcohol) by boric acid. J Appl Polym Sci 96(4):1394–1397

    Article  CAS  Google Scholar 

  25. Gouda M, Badr S, Hassan M, Sheha E (2011) Impact of ethylene carbonate on electrical properties of PVA/(NH4)2SO4/H2SO4 proton-conductive membrane. Ionics 17(3):255–261

    Article  CAS  Google Scholar 

  26. Duman O, Uğurlu H, Diker CÖ, Tunç S (2022) Fabrication of highly hydrophobic or superhydrophobic electrospun PVA and agar/PVA membrane materials for efficient and selective oil/water separation. J Environ Chem Eng 10(3):107405

    Article  CAS  Google Scholar 

  27. Duman O, Polat TG, Tunç S (2022) Development of poly (vinyl alcohol)/β-cyclodextrin/P (MVE-MA) composite nanofibers as effective and selective adsorbent and filtration material for the removal and separation of cationic dyes from water. J Environ Manag 322:116130

    Article  CAS  Google Scholar 

  28. Duman O, Diker CÖ, Uğurlu H, Tunç S (2022) Highly hydrophobic and superoleophilic agar/PVA aerogels for selective removal of oily substances from water. Carbohydr Polym 286:119275

    Article  CAS  PubMed  Google Scholar 

  29. Razzak M, Dewi S, Lely H, Taty E (1999) The characterization of dressing component materials and radiation formation of PVA–PVP hydrogel. Radiat Phys Chem 55(2):153–165

    Article  CAS  Google Scholar 

  30. Kamoun EA, Kenawy E-RS, Chen X (2017) A review on polymeric hydrogel membranes for wound dressing applications: PVA-based hydrogel dressings. J Adv Res 8(3):217–233

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Himly N, Darwis D, Hardiningsih L (1993) Poly (n-vinylpyrrolidone) hydrogels: 2. Hydrogel composites as wound dressing for tropical environment. Radiat Phys Chem 42(4–6):911–914

    Article  Google Scholar 

  32. Boateng JS, Matthews KH, Stevens HN, Eccleston GM (2008) Wound healing dressings and drug delivery systems: a review. J Pharm Sci 97(8):2892–2923

    Article  CAS  PubMed  Google Scholar 

  33. Hassanzadeh-Tabrizi S, Norbakhsh H, Pournajaf R, Tayebi M (2021) Synthesis of mesoporous cobalt ferrite/hydroxyapatite core-shell nanocomposite for magnetic hyperthermia and drug release applications. Ceram Int 47(13):18167–18176

    Article  CAS  Google Scholar 

  34. Talaei M, Hassanzadeh-Tabrizi S, Saffar-Teluri A (2021) Synthesis of mesoporous CuFe2O4@ SiO2 core-shell nanocomposite for simultaneous drug release and hyperthermia applications. Ceram Int 47(21):30287–30297

    Article  CAS  Google Scholar 

  35. Bigham A, Hassanzadeh-Tabrizi S, Rafienia M, Salehi H (2016) Ordered mesoporous magnesium silicate with uniform nanochannels as a drug delivery system: The effect of calcination temperature on drug delivery rate. Ceram Int 42(15):17185–17191

    Article  CAS  Google Scholar 

  36. Bigham A, Aghajanian AH, Allahdaneh S, Hassanzadeh-Tabrizi S (2019) Multifunctional mesoporous magnetic Mg2SiO4–CuFe2O4 core-shell nanocomposite for simultaneous bone cancer therapy and regeneration. Ceram Int 45(15):19481–19488

    Article  CAS  Google Scholar 

  37. Bigham A, Aghajanian AH, Behzadzadeh S, Sokhani Z, Shojaei S, Kaviani Y, Hassanzadeh-Tabrizi S (2019) Nanostructured magnetic Mg2SiO4-CoFe2O4 composite scaffold with multiple capabilities for bone tissue regeneration. Mater Sci Eng C 99:83–95

    Article  CAS  Google Scholar 

  38. Khamsehashari N, Hassanzadeh-Tabrizi S, Bigham A (2018) Effects of strontium adding on the drug delivery behavior of silica nanoparticles synthesized by P123-assisted sol-gel method. Mater Chem Phys 205:283–291

    Article  CAS  Google Scholar 

  39. Ansari M, Bigham A, Hassanzadeh-Tabrizi S, Ahangar HA (2017) Synthesis and characterization of Cu0.3Zn0.5Mg0.2Fe2O4 nanoparticles as a magnetic drug delivery system. J Magn Magn Mater 439:67–75

    Article  CAS  Google Scholar 

  40. Ali NH, Amin MCIM, Ng S-F (2019) Sodium carboxymethyl cellulose hydrogels containing reduced graphene oxide (rGO) as a functional antibiofilm wound dressing. J Biomater Sci Polym Ed 30(8):629–645

    Article  CAS  PubMed  Google Scholar 

  41. Khan MUA, Haider S, Raza MA, Shah SA, Abd Razak SI, Kadir MRA, Subhan F, Haider A (2021) Smart and pH-sensitive rGO/Arabinoxylan/chitosan composite for wound dressing: In-vitro drug delivery, antibacterial activity, and biological activities. Int J Biol Macromol 192:820–831

    Article  CAS  PubMed  Google Scholar 

  42. Compton OC, Nguyen ST (2010) Graphene oxide, highly reduced graphene oxide, and graphene: versatile building blocks for carbon-based materials. Small 6(6):711–723

    Article  CAS  PubMed  Google Scholar 

  43. Fan Z, Liu B, Wang J, Zhang S, Lin Q, Gong P, Ma L, Yang S (2014) A novel wound dressing based on Ag/graphene polymer hydrogel: effectively kill bacteria and accelerate wound healing. Adv Funct Mater 24(25):3933–3943

    Article  CAS  Google Scholar 

  44. Usman A, Hussain Z, Riaz A, Khan AN (2016) Enhanced mechanical, thermal and antimicrobial properties of poly (vinyl alcohol)/graphene oxide/starch/silver nanocomposites films. Carbohydr Polym 153:592–599

    Article  CAS  PubMed  Google Scholar 

  45. Hemmatgir F, Koupaei N, Poorazizi E (2022) Characterization of a novel semi-interpenetrating hydrogel network fabricated by polyethylene glycol diacrylate/polyvinyl alcohol/tragacanth gum as a wound dressing. Burns 48(1):146–155

    Article  PubMed  Google Scholar 

  46. Gonzalez JS, Ludueña LN, Ponce A, Alvarez VA (2014) Poly (vinyl alcohol)/cellulose nanowhiskers nanocomposite hydrogels for potential wound dressings. Mater Sci Eng, C 34:54–61

    Article  CAS  Google Scholar 

  47. Shojaei S, Hassanzadeh-Tabrizi S, Ghashang M (2014) Reverse microemulsion synthesis and characterization of CaSnO3 nanoparticles. Ceram Int 40(7):9609–9613

    Article  CAS  Google Scholar 

  48. Pournajaf R, Hassanzadeh-Tabrizi S, Jafari M (2014) Reverse microemulsion synthesis of CeO2 nanopowder using polyoxyethylene (23) lauryl ether as a surfactant. Ceram Int 40(6):8687–8692

    Article  CAS  Google Scholar 

  49. Basha S, Kumar KV, Sundari GS, Rao M (2018) Structural and electrical properties of graphene oxide-doped PVA/PVP blend nanocomposite polymer films. Adv Mater Sci Eng

  50. Hassanzadeh-Tabrizi S, Nguyen C-C, Do T-O (2019) Synthesis of Fe2O3/Pt/Au nanocomposite immobilized on g-C3N4 for localized plasmon photocatalytic hydrogen evolution. Appl Surf Sci 489:741–754

    Article  CAS  Google Scholar 

  51. Yook S-H, Kim S-H, Park C-H, Kim D-W (2016) Graphite–silicon alloy composite anodes employing cross-linked poly (vinyl alcohol) binders for high-energy density lithium-ion batteries. RSC Adv 6(86):83126–83134

    Article  CAS  Google Scholar 

  52. Dilaver M, Yurdakoc K (2016) Fumaric acid cross-linked carboxymethylcellulose/poly (vinyl alcohol) hydrogels. Polym Bull 73(10):2661–2675

    Article  CAS  Google Scholar 

  53. Ma J, Li Y, Yin X, Xu Y, Yue J, Bao J, Zhou T (2016) Poly (vinyl alcohol)/graphene oxide nanocomposites prepared by in situ polymerization with enhanced mechanical properties and water vapor barrier properties. RSC Adv 6(55):49448–49458

    Article  CAS  Google Scholar 

  54. Duman O, Diker CÖ, Tunç S (2021) Development of highly hydrophobic and superoleophilic fluoro organothiol-coated carbonized melamine sponge/rGO composite absorbent material for the efficient and selective absorption of oily substances from aqueous environments. J Environ Chem Eng 9(2):105093

    Article  CAS  Google Scholar 

  55. Ma J, Liu C, Li R, Wang J (2012) Properties and structural characterization of chitosan/poly (vinyl alcohol)/graphene oxide nano composites. e-Polymers 12(1)

  56. Heo Y, Im H, Kim J (2013) The effect of sulfonated graphene oxide on sulfonated poly (ether ether ketone) membrane for direct methanol fuel cells. J Membr Sci 425:11–22

    Article  Google Scholar 

  57. Eshagh S, Abbaspour-Fard MH, Hosseini F, Tabasizadeh M (2019) Effect of zinc oxide nanoparticles on mechanical, thermal and biodegradability of gelatin-based biocomposite properties films. Iran J Polym Sci Technol 32(5):411–426

    Google Scholar 

  58. Nikfar N, Izadi-Vasafi H, Goudarzi L (2019) Assessment of the microstructure and mechanical properties of polycarbonate (PC)/acrylonitrile butadiene rubber (NBR) blends reinforced with multi-wall carbon nanotubes. J Macromol Sci Part B 58(9):760–771

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Narjes Koupaei.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

• Novel semi-interpenetrating hydrogel networks of PVA/PVP/ nano-rGO were synthesized as a wound dressing.

• The PVA/PVP/nano-rGO components showed excellent dispersion and strong interactions.

• Hydrogel dressings are crosslinked as hydrophilic polymers.

• PVA/PVP/rGO network can be a great hydrogel for wound dressing.

• PVA/PVP/nano-rGO membrane exhibited good biocompatibility and antibacterial activity.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 291 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Esfahani, N.P., Koupaei, N. & Bahreini, H. Fabrication and characterization of a novel hydrogel network composed of polyvinyl alcohol/polyvinylpyrrolidone/nano-rGO as wound dressing application. J Polym Res 30, 56 (2023). https://doi.org/10.1007/s10965-022-03434-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10965-022-03434-3

Keywords

Navigation