Log in

Development and characterization of multifunctional electrospun ferric oxide-gelatin-glycerol nanofibrous mat for wound dressing applications

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, we developed optimal multifunctional electrospun wound dressings possessing an antibacterial activity and rich in iron, a vital trace element for cell growth. Therefore, synthetic ferric oxide nanoparticles (α-Fe2O3 NPs) were ultrasonically dispersed into preheated gelatin-glycerol solution. A variety of techniques (X-ray diffraction (XRD), Fourier transform infrared (FTIR), scanning electron microscopy (SEM), transmission electron microscopy (TEM), differential thermal analysis (DTA), in-vitro swelling-degradation studies and antibacterial tests) were used to characterize the electrospun mats. The results highlight that α-Fe2O3 NPs could be successfully dispersed into the electrospun gelatin nanofibers. The electrospun ferric oxide-gelatin-glycerol nanofibrous mats revealed free beads nanofibers with appropriated swelling-degradation behavior. It was observed that addition of α-Fe2O3 NPs enhanced the antibacterial activity of electrospun mats against positive and negative bacteria.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. J. Meinel, O. Germershaus, T. Luhmann, H. P. Merkle, and L. Meinel, Eur. J. Pharm. Biopharm., 81, 1 (2012).

    Article  CAS  Google Scholar 

  2. D. Kai, S. S. Liow, and X. J. Loh, Mater. Sci. Eng. CMater. Biol. Appl., 45, 659 (2014).

    Article  CAS  Google Scholar 

  3. J. Boateng and O. Catanzano, J. Pharm. Sci., 104, 3653 (2015).

    Article  CAS  Google Scholar 

  4. L. I. F. Moura, A. M. A. Dias, E. Carvalho, and H. C. de Sousa, Acta Biomater., 9, 7093 (2013).

    Article  CAS  Google Scholar 

  5. M. Tummalapalli, M. Berthet, B. Verrier, B. L. Deopura, M. S. Alam, and B. Gupta, Int. J. Biol. Macromol., 82, 104 (2016).

    Article  CAS  Google Scholar 

  6. K. Jalaja, P. R. A. Kumar, T. Dey, S. C. Kundu, and N. R. James, Carbohydr. Polym., 114, 467 (2014).

    Article  CAS  Google Scholar 

  7. Y. Z. Zhang, J. Venugopal, Z.-M. Huang, C. T. Lim, and S. Ramakrishnam, Polymer, 47, 2911 (2006).

    Article  CAS  Google Scholar 

  8. H. Li, J. Hu, H. Yang, L. Tao, and L. Zhu, J. Controlled Release, 213, e40 (2015).

    Article  Google Scholar 

  9. G. Speit, S. Neuss, P. Schütz, M. Fröhler-Keller, and O. Schmid, Mutat. Res. Genet. Toxicol. Environ. Mutagen., 649, 146 (2008).

    Article  CAS  Google Scholar 

  10. N. Latorre, J. F. Silvestre, and A. F. Monteagudo, Actas Dermo-Sifiliogr., 102, 86 (2011).

    Article  CAS  Google Scholar 

  11. J. Biscarat, B. Galea, J. Sanchez, and C. Pochat-Bohatier, Int. J. Biol. Macromol., 74, 5 (2015).

    Article  CAS  Google Scholar 

  12. V. Švachová, L. Vojtová, D. Pavlinák, L. Vojtek, V. Sedláková, P. Hyršl, M. Alberti, J. Jaroš, A. Hampl, and J. Jancár, Mater. Sci. Eng. C-Mater. Biol. Appl., 67, 493 (2016).

    Article  Google Scholar 

  13. J. Liang, Q. **a, S. Wang, J. Li, Q. Huang, and R. D. Ludescher, Food Hydrocoll., 44, 94 (2015).

    Article  CAS  Google Scholar 

  14. N. Riquelme, P. Díaz-Calderón, J. Enrione, and S. Matiacevich, Food Chem., 175, 478 (2015).

    Article  CAS  Google Scholar 

  15. D. F. Pisani, C. D. K. Bottema, C. Butori, C. Dani, and C. A. Dechesne, Biochem. Biophys. Res. Commun., 396, 767 (2010).

    Article  CAS  Google Scholar 

  16. E. De Giglio, M. A. Bonifacio, S. Cometa, D. Vona, M. Mattioli-Belmonte, M. Dicarlo, E. Ceci, V. Fino, S. R. Cicco, and G. M. Farinola, Colloids Surf. B-Biointerfaces, 136, 600 (2015).

    Article  CAS  Google Scholar 

  17. F. D. Halstead, M. Rauf, A. Bamford, C. M. Wearn, J. R. B. Bishop, R. Burt, A. P. Fraise, N. S. Moiemen, B. A. Oppenheim, and M. A. Webber, Burns, 41, 1683 (2015).

    Article  Google Scholar 

  18. M. M. Soltan Dallal, R. Safdari, H. Emadi Koochak, S. Sharifi-Yazdi, M. R. Akhoondinasab, M. R. Pourmand, A. Hadayatpour, and M. K. Sharifi-Yazdi, Burns, 42, 578 (2016).

    Article  CAS  Google Scholar 

  19. T. Lam, P. Pouliot, P. K. Avti, F. Lesage, and A. K. Kakkar, Adv. Colloid Interface Sci., 199-200, 95 (2013).

    Article  CAS  Google Scholar 

  20. M. Mahmoudi, S. Sant, B. Wang, S. Laurent, and T. Sen, Adv. Drug Deliv. Rev., 63, 24 (2011).

    Article  CAS  Google Scholar 

  21. D. J. R. Lane, A. M. Merlot, M. L. Huang, D. Bae, P. J. Jansson, S. Sahni, D. S. Kalinowski, and D. R. Richardson, BBA-Mol. Cell Res., 1853, 1130 (2015).

    CAS  Google Scholar 

  22. B. Silva and P. Faustino, BBA-Mol. Basis Dis., 1852, 1347 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Morsy.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsy, R., Hosny, M., Reicha, F. et al. Development and characterization of multifunctional electrospun ferric oxide-gelatin-glycerol nanofibrous mat for wound dressing applications. Fibers Polym 17, 2014–2019 (2016). https://doi.org/10.1007/s12221-016-6915-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6915-8

Keywords

Navigation