Log in

Weakly Radio-Frequency Negative Permittivity of Poly(vinylidene fluoride)/Ti3SiC2 MAX Phase Metacomposites

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

While metal or carbon materials served as conductive phase in fabricating metamaterials or metacomposites have been widely investigated, MAX phases could provide alternative route. In this paper, Poly(vinylidene fluoride)/Ti3SiC2 MAX phase metacomposites with different Ti3SiC2 content were fabricated. Electrical and dielectric properties of metacomposites were analyzed. Percolating phenomenon was observed over the percolation threshold (fc). Below fc, ac conductivity spectra were explained by Jonscher’s power law, indicating hop** conduction behavior. Above fc, ac conductivity of composites follows Drude model, suggesting the metal-like conductive behavior. Weakly negative permittivity behavior was observed and explained by Lorentz and Drude model, suggesting the combinative contribution of induced electric dipole resonance and low-frequency plasmonic oscillation. The impedance performance of composites were also clarified by Nyquist plots and equivalent circuit analysis, manifesting the capacitive-inductive shift of composites. This work presented a novel route to metacomposites with weakly negative permittivity which greatly benefitted the practical applications of MAX phase in metacomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)

    Article  CAS  Google Scholar 

  2. D.R. Smith, J.B. Pendry, M.C. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  CAS  PubMed  Google Scholar 

  3. B. Wang, K.H. Teo, T. Nishino, W. Yerazunis, J. Barnwell, J. Zhang, Experiments on wireless power transfer with metamaterials. Appl. Phys. Lett. 98, 254101–254103 (2011)

    Article  CAS  Google Scholar 

  4. S. Jahani, Z. Jacob, All-dielectric metamaterials. Nat. Nanotechnol. 11, 23–36 (2016)

    Article  CAS  PubMed  Google Scholar 

  5. N.K. Grady, J.E. Heyes, D.R. Chowdhury, Y. Zeng, M.T. Reiten, A.K. Azad, A.J. Taylor, D.A. Dalvit, H.T. Chen, Terahertz metamaterials for linear polarization conversion and anomalous refraction. Science 340, 1304–1307 (2013)

    Article  CAS  PubMed  Google Scholar 

  6. W.J. Padilla, D.N. Basov, D.R. Smith, Negative refractive index metamaterials. Mater. Today 9, 28–35 (2006)

    Article  CAS  Google Scholar 

  7. S. Linden, C. Enkrich, M. Wegener, J. Zhou, T. Koschny, C.M. Soukoulis, Magnetic response of metamaterials at 100 terahertz. Science 306, 1351–1353 (2004)

    Article  CAS  PubMed  Google Scholar 

  8. V.M. Shalaev, T.A. Klar, V.P. Drachev, A.V. Kildishev, Optical negative-index metamaterials: from low to no loss. Nat. Photon. 1, 41–48 (2006)

    Article  Google Scholar 

  9. D.R. Smith, J.B. Pendry, M.C.K. Wiltshire, Metamaterials and negative refractive index. Science 305, 788–792 (2004)

    Article  CAS  PubMed  Google Scholar 

  10. X. Zhang, Metamaterials for perpetual cooling at large scales. Science 355, 1023–1024 (2017)

    Article  CAS  PubMed  Google Scholar 

  11. M. Chen, X. Wang, Z. Zhang, K. Sun, C. Cheng, F. Dang, Negative permittivity behavior and magnetic properties of C/YIG composites at radio frequency. Mater. Des. 97, 454–458 (2016)

    Article  CAS  Google Scholar 

  12. N.D. Gavrilova, V.K. Novik, A.V. Vorobyev, I.A. Malyshkina, Negative dielectric permittivity of poly(acrylic acid) pressed pellets. J. Non-Cryst. Solids 452, 1–8 (2016)

    Article  CAS  Google Scholar 

  13. Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)

    Article  CAS  Google Scholar 

  14. Z. Zhang, K. Sun, Y. Liu, Z. Kuang, S. Sun, X. Ji, The negative permittivity behavior and magnetic property of FeNi/Al2O3 composites in radio frequency region. Ceram. Int. 42, 19063–19065 (2016)

    Article  CAS  Google Scholar 

  15. M. Chen, R.H. Fan, M. Gao, S.B. Pan, M.X. Yu, Z.D. Zhang, Negative permittivity behavior in Fe50Ni50/Al2O3 magnetic composite near percolation threshold. J. Magn. Magn. Mater. 381, 105–108 (2015)

    Article  CAS  Google Scholar 

  16. M. Chen, M. Gao, F. Dang, N. Wang, B. Zhang, S. Pan, Tunable negative permittivity and permeability in FeNiMo/Al2O3 composites prepared by hot-pressing sintering. Ceram. Int. 42, 6444–6449 (2016)

    Article  CAS  Google Scholar 

  17. Q. Hou, K.L. Yan, R.H. Fan, Z.D. Zhang, M. Chen, K. Sun, C.B. Cheng, Experimental realization of tunable negative permittivity in percolative Fe78Si9B13/epoxy composites. RSC Adv. 5, 9472–9475 (2015)

    Article  CAS  Google Scholar 

  18. X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun, S.B. Pan, M.X. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)

    Article  CAS  Google Scholar 

  19. M.A. Piechowiak, J. Henon, O. Durand-Panteix, G. Etchegoyen, V. Coudert, P. Marchet, F. Rossignol, Growth of dense Ti3SiC2 MAX phase films elaborated at room temperature by aerosol deposition method. J. Eur. Ceram. Soc. 34, 1063–1072 (2014)

    Article  CAS  Google Scholar 

  20. L.L. Zheng, L.C. Sun, M.S. Li, Y.C. Zhou, Improving the high-temperature oxidation resistance of Ti3(SiAl)C2 by Nb-do**. J. Am. Ceram. Soc. 94, 3579–3586 (2011)

    Article  CAS  Google Scholar 

  21. J.L. Smialek, Environmental resistance of a Ti2AlC-type MAX phase in a high pressure burner rig. J. Eur. Ceram. Soc. 37, 23–34 (2017)

    Article  CAS  Google Scholar 

  22. R. Yin, H. Wu, K. Sun et al., Fabrication of graphene network in alumina ceramics with adjustable negative permittivity by spark plasma sintering. J. Phys. Chem. C 122, 1791–1799 (2018)

    Article  CAS  Google Scholar 

  23. R. Yin, Y. Zhang, W. Zhao et al., Graphene platelets/aluminium nitride metacomposites with double percolation property of thermal and electrical conductivity. J. Eur. Ceram. Soc. 38, 4701–4706 (2018)

    Article  CAS  Google Scholar 

  24. H. Wu, R. Yin, Y. Zhang et al., Synergistic effects of carbon nanotubes on negative dielectric properties of graphene-phenolic resin composites. J. Phys. Chem. C 121, 12037–12045 (2017)

    Article  CAS  Google Scholar 

  25. H. Wu, R. Yin, L. Qian et al., Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Des. 117, 18–23 (2017)

    Article  CAS  Google Scholar 

  26. H. Wu, Y. Zhang, R. Yin et al., Magnetic negative permittivity with dielectric resonance in random Fe3O4@graphene-phenolic resin composites. Adv. Compos. Hybrid Mater. 1, 168–176 (2018)

    Article  Google Scholar 

  27. H. Wu, Y. Qi, Z. Wang et al., Low percolation threshold in flexible graphene/acrylic polyurethane composites with tunable negative permittivity. Compos. Sci. Technol. 151, 79–84 (2017)

    Article  CAS  Google Scholar 

  28. P. **e, Z. Wang, Z. Zhang et al., Silica microspheres templated self-assembly of three-dimensional carbon network with stable radio-frequency negative permittivity and low dielectric loss. J. Mater. Chem. C 6, 5239–5249 (2018)

    Article  CAS  Google Scholar 

  29. P. **e, K. Sun, Z. Wang et al., Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloy. Compd. 725, 1259–1263 (2017)

    Article  CAS  Google Scholar 

  30. Z. Guo, P. **e, F. Dang et al., Bio-gel derived nickel/carbon nanocomposites with enhanced microwave absorption. J. Mater. Chem. C 6, 8812–8822 (2018)

    Article  Google Scholar 

  31. P. **e, W. Sun, Y. Liu et al., Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2018)

    Article  CAS  Google Scholar 

  32. Z. Zhao, R. Guan, J. Zhang, Z. Zhao, P. Bai, Effects of process parameters of semisolid stirring on microstructure of Mg-3Sn-1Mn-3SiC (wt%) strip processed by rheo-rolling. Acta Metall. Sin. 30, 66–72 (2017)

    Article  CAS  Google Scholar 

  33. Z. Zhao, P. Bai, R. Guan, V. Murugadoss, H. Liu, X. Wang, Z. Guo, Microstructural evolution and mechanical strengthening mechanism of Mg-3Sn-1Mn-1La alloy after heat treatments. Mater. Sci. Eng. A 734, 200–209 (2018)

    Article  CAS  Google Scholar 

  34. T. Su, Q. Shao, Z. Qin, Z. Guo, Z. Wu, Role of interfaces in two-dimensional photocatalyst for water splitting. ACS Catal. 8, 2253–2276 (2018)

    Article  CAS  Google Scholar 

  35. Z. Sun et al., Experimental and simulation understanding of morphology controlled barium titanate nanoparticles under co-adsorption of surfactants. CrystEngComm 19, 3288–3298 (2017)

    Article  CAS  Google Scholar 

  36. L. Zhang, W. Yu, C. Han, J. Guo, Q. Zhang, H. **e, Q. Shao, Z. Sun, Z. Guo, Large scaled synthesis of heterostructured electrospun TiO2/SnO2 nanofibers with an enhanced photocatalytic activity. J. Electrochem. Soc. 164, H651–H656 (2017)

    Article  CAS  Google Scholar 

  37. L. Zhang, M. Qin, W. Yu, Q. Zhang, H. **e, Z. Sun, Q. Shao, X. Guo, L. Hao, Y. Zheng, Z. Guo, Heterostructured TiO2/WO3 nanocomposites for photocatalytic degradation of toluene under visible light. J. Electrochem. Soc. 164, H1086–H1090 (2017)

    Article  CAS  Google Scholar 

  38. Y. Zhang, L. Qian, W. Zhao, X. Li, X. Huang, X. Mai, Z. Wang, Q. Shao, X. Yan, Z. Guo, Highly efficient Fe-N-C nanoparticles modified porous graphene composites for oxygen reduction reaction. J. Electrochem. Soc. 165, H510–H516 (2018)

    Article  CAS  Google Scholar 

  39. B. Song, T. Wang, H. Sun, Q. Shao, J. Zhao, K. Song, L. Hao, L. Wang, Z. Guo, Two-step hydrothermally synthesized carbon nanodots/WO3 photocatalysts with enhanced photocatalytic performance. Dalton Trans. 46, 15769–15777 (2017)

    Article  CAS  PubMed  Google Scholar 

  40. X. Lou, C. Lin, Q. Luo, J. Zhao, B. Wang, J. Li, Q. Shao, X. Guo, N. Wang, Z. Guo, Crystal-structure modification enhanced FeNb11O29 anodes for lithium-ion batteries. ChemElectroChem 4, 3171–3180 (2017)

    Article  CAS  Google Scholar 

  41. C. Lin, H. Hu, C. Cheng, K. Sun, X. Guo, Q. Shao, J. Li, N. Wang, Z. Guo, Nano-TiNb2O7/carbon nanotubes composite anode for enhanced lithium-ion storage. Electrochim. Acta 260, 65–72 (2018)

    Article  CAS  Google Scholar 

  42. Q. Hou, J. Ren, H. Chen, P. Yang, Q. Shao, M. Zhao, X. Zhao, H. He, N. Wang, Q. Luo, Z. Guo, Synergistic hematite-fullerene electron extracting layers for improved efficiency and stability in perovskite solar cells. ChemElectroChem 5, 726–731 (2018)

    Article  CAS  Google Scholar 

  43. Y. Li, T. **g, G. Xu, J. Tian, M. Dong, Q. Shao, B. Wang, Z. Wang, Y. Zheng, C. Yang, Z. Guo, 3-D magnetic graphene oxide-magnetite poly(vinyl alcohol) nanocomposite substrates for immobilizing enzyme. Polymer 149, 13–22 (2018)

    Article  CAS  Google Scholar 

  44. C. Wang, M. Zhao, J. Li, J. Yu, S. Sun, S. Ge, X. Guo, F. **e, B. Jiang, E. Wujcik, Y. Huang, N. Wang, Z. Guo, Silver nanoparticles/graphene oxide decorated carbon fiber synergistic reinforcement in epoxy-based composites. Polymer 131, 263–271 (2017)

    Article  CAS  Google Scholar 

  45. J. Zhao, L. Wu, C. Zhan, Q. Shao, Z. Guo, L. Zhang, Overview of polymer nanocomposites: computer simulation understanding of physical properties. Polymer 133, 272–287 (2017)

    Article  CAS  Google Scholar 

  46. X. Cui, G. Zhu, Y. Pan, Q. Shao, C. Zhao, M. Dong, Y. Zhang, Z. Guo, Polydimethylsiloxane-titania nanocomposite coating: fabrication and corrosion resistance. Polymer 138, 203–210 (2018)

    Article  CAS  Google Scholar 

  47. C. Wang, B. Mo, Z. He, C.X. Zhao, L. Zhang, Q. Shao, X. Guo, E. Wujcik, Z. Guo, Hydroxide ions transportation in polynorbornene anion exchange membrane. Polymer 138, 363–368 (2018)

    Article  CAS  Google Scholar 

  48. Y. He, S. Yang, H. Liu et al., Reinforced carbon fiber laminates with oriented carbon nanotube epoxy nanocomposites: magnetic field assisted alignment and cryogenic temperature mechanical properties. J. Colloid Interface Sci. 517, 40–51 (2018)

    Article  CAS  PubMed  Google Scholar 

  49. Z. Wu, S. Gao, L. Chen, D. Jiang, Q. Shao, B. Zhang, Z. Zhai, C. Wang, M. Zhao, Y. Ma, X. Zhang, L. Weng, M. Zhang, Z. Guo, Electrically insulated epoxy nanocomposites reinforced with synergistic core-shell SiO2@MWCNTs and montmorillonite bifillers. Macromol. Chem. Phys. 218, 1700357 (2017)

    Article  CAS  Google Scholar 

  50. Y. Zheng, Y. Zheng, S. Yang, Z. Guo, T. Zhang, H. Song, Q. Shao, Esterification synthesis of ethyl oleate catalyzed by Brønsted acid-surfactant-combined ionic liquid. Green Chem. Lett. Rev. 10, 202 (2017)

    Article  CAS  Google Scholar 

  51. Y. Zheng, Y. Zheng, Z. Wang, Y. Cao, Q. Shao, Z. Guo, Sodium dodecyl benzene sulfonate-catalyzed reaction for aromatic aldehydes with 1-phenyl-3-methyl-5-pyrazolone in aqueous media. Green Chem. Lett. Rev. 11, 217–223 (2018)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China [Grant Nos. 51771104 and 51402170].The author Yunpeng Qu thanks Murakami Haruki, Franz Kafka and Higashino Keigo whose novels comforted the author’s soul. The author Yunpeng Qu also thanks Prof. Shaohua Lin from Ocean University of China (OUC) whose replying letter encouraged Qu to work for the graduate degree.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yao Liu or Kai Sun.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 349 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Y., Qu, Y., **n, J. et al. Weakly Radio-Frequency Negative Permittivity of Poly(vinylidene fluoride)/Ti3SiC2 MAX Phase Metacomposites. J Inorg Organomet Polym 29, 248–257 (2019). https://doi.org/10.1007/s10904-018-0983-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-018-0983-8

Keywords

Navigation