Log in

Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

Functional metacomposites towards negative dielectric properties via percolating behavior have triggered tremendous fundamental and practical interest. In this paper, titanium nitride was selected to construct percolating metacomposites. Hence, adjusting the frequency region and the value of negative permittivity was effectively realized by uniformly building different ratio x of nickel(II) oxide/titanium nitride composites. Occurrence of percolation phenomenon and change of conductive mechanism were observed when alternating the ratio x. Two different types of negative permittivity (i.e., dipole-type and plasma-type) were observed in the composites. The dipole-type negative permittivity behavior in the composite with low titanium nitride content (i.e., x = 0.5) was ascribed to the resonance-induced electric dipole generated from the isolated titanium nitride particles, which could be explained by Lorentz model. While the plasma-type negative permittivity with titanium nitride content exceeding the percolation threshold could be well explained by the low frequency plasmonic state generated from conductive titanium nitride networks using Drude model. Besides, the electrical properties influenced by percolating phenomenon including ac conductivity, dielectric loss, and impedance were investigated. This work presents a systematic and novel investigation on negative dielectric properties of percolating metacomposites and will greatly facilitate the practical applications of metacomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. C.W. Nan, Physics of inhomogeneous inorganic materials. Prog. Mater. Sci. 37, 1–116 (1993)

    CAS  Google Scholar 

  2. D.J. Bergman, D. Stroud, Physical properties of macroscopically inhomogeneous media. Solid State Phys. 46, 147–269 (1992)

    CAS  Google Scholar 

  3. C.W. Nan, Y. Shen, J. Ma, Physical properties of composites near percolation. Annu. Rev. Mater. Res. 40, 131–151 (2010)

    CAS  Google Scholar 

  4. K. Sun, R. Fan, Y. Yin, J. Guo, X.F. Li, Y. Lei, L. An, C. Cheng, Z. Guo, Tunable negative permittivity with fano-like resonance and magnetic property in percolative silver/yittrium iron garnet nanocomposites. J. Phys. Chem. C 121, 7564–7571 (2017)

    CAS  Google Scholar 

  5. R. Zheng, J. Gao, J. Wang, S.P. Feng, H. Ohtani, J. Wang, G. Chen, Thermal percolation in stable graphite suspensions. Nano Letters 12, 188–192 (2012)

    CAS  Google Scholar 

  6. M.S. White, M. Kaltenbrunner, E.D. Głowacki, K. Gutnichenko, G. Kettlgruber, I. Graz, S. Aazou, C. Ulbricht, D.A.M. Egbe, M.C. Miron, Ultrathin, highly flexible and stretchable PLEDs. Nat. Photonics 7, 811–816 (2013)

    CAS  Google Scholar 

  7. Z. Shi, J. Wang, F. Mao, C. Yang, C. Zhang, R. Fan, Significantly improved dielectric performances of sandwich-structured polymer composites induced by alternating positive-k and negative-k layers. J. Mater. Chem. A 5, 14575–14582 (2017)

    CAS  Google Scholar 

  8. C. Cheng, R. Fan, Y. Ren, T. Ding, L. Qian, J. Guo, X. Li, L. An, Y. Lei, Y. Yin, Radio frequency negative permittivity in random carbon nanotubes/alumina nanocomposites. Nanoscale 9, 5779–5787 (2017)

    CAS  Google Scholar 

  9. Z. Zhang, R. Fan, Z. Shi, S. Pan, K. Yan, K. Sun, J. Zhang, X. Liu, X.L. Wang, S.X. Dou, Tunable negative permittivity behavior and conductor–insulator transition in dual composites prepared by selective reduction reaction. J. Mater. Chem. C 1, 79–85 (2013)

    CAS  Google Scholar 

  10. Z. Shi, S. Chen, R. Fan, X. Wang, X. Wang, Z. Zhang, K. Sun, Ultra low percolation threshold and significantly enhanced permittivity in porous metal–ceramic composites. J. Mater. Chem. C 2, 6752–6757 (2014)

    CAS  Google Scholar 

  11. Y. Su, Y. Gu, S. Feng, Composites of NBCTO/MWCNTs/PVDF with high dielectric permittivity and low dielectric loss. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8160-3

    Article  Google Scholar 

  12. W. Yang, H. Li, J. Lin, G. Chen, Y. Wang, L. Wang, H. Lu, L. Chen, Q. Lei, A novel all-organic DIPAB/PVDF composite film with high dielectric permittivity., J. Mater. Sci. Mater. Electron. 28, 1–9 (2017)

    Google Scholar 

  13. G. Fan, P. **e, Z. Wang, Y. Qu, Z. Zhang, Y. Liu, R. Fan, Tailorable radio-frequency negative permittivity of titanium nitride sintered with different oxidation pretreatments. Ceram. Int. 43, 16980–16985 (2017)

    CAS  Google Scholar 

  14. P. **e, W. Sun, Y. Liu, A. Du, Z. Zhang, G. Wu, R. Fan, Carbon aerogels towards new candidates for double negative metamaterials of low density. Carbon 129, 598–606 (2017)

    Google Scholar 

  15. K. Sun, P. **e, Z. Wang, T. Su, Q. Shao, J. Ryu, X. Zhang, J. Guo, A. Shankar, J. Li, Flexible polydimethylsiloxane/multi-walled carbon nanotubes membranous metacomposites with negative permittivity. Polymer 125, 50–57 (2017)

    CAS  Google Scholar 

  16. P. **e, K. Sun, Z. Wang, Y. Liu, R. Fan, Z. Zhang, G. Schumacher, Negative permittivity adjusted by SiO2-coated metallic particles in percolative composites. J. Alloys Compd. 725, 1259–1263 (2017)

    CAS  Google Scholar 

  17. P. **e, Z. Wang, K. Sun, C. Cheng, Y. Liu, R. Fan, Regulation mechanism of negative permittivity in percolating composites via building blocks. Appl. Phys. Lett. 111, 112903 (2017)

    Google Scholar 

  18. Z.C. Shi, R.H. Fan, K.L. Yan, K. Sun, M. Zhang, C.G. Wang, X.F. Liu, X.H. Zhang, Preparation of iron networks hosted in porous alumina with tunable negative permittivity and permeability. Adv. Func. Mater. 23, 4123–4132 (2013)

    CAS  Google Scholar 

  19. Z.C. Shi, R.H. Fan, Z.D. Zhang, H.Y. Gong, J. Ouyang, Y.J. Bai, X.H. Zhang, L.W. Yin, Experimental/theoretical investigation on the high frequency dielectric properties of Ag/Al2O3 composites. Appl. Phys. Lett. 99, 137401 (2011)

    Google Scholar 

  20. Z. Shi, S. Chen, K. Sun, X. Wang, R.-H. Fan, X.-A. Wang, Tunable radio-frequency negative permittivity in nickel-alumina “natural” meta-composites. Appl. Phys. Lett. 104, 52–3398 (2014)

    Google Scholar 

  21. X.A. Wang, Z.C. Shi, M. Chen, R.H. Fan, K.L. Yan, K. Sun, S.B. Pan, M.X. Yu, Tunable electromagnetic properties in Co/Al2O3 cermets prepared by wet chemical method. J. Am. Ceram. Soc. 97, 3223–3229 (2014)

    CAS  Google Scholar 

  22. Z. Shi, F. Mao, J. Wang, R. Fan, X. Wang, Percolative silver/alumina composites with radio frequency dielectric resonance-induced negative permittivity. RSC Adv. 5, 107307–107312 (2015)

    CAS  Google Scholar 

  23. Y. Qu, P. **e, G. Fan, Y. Liu, Y. Wu, L. Zhang, R. Fan, Strategy of adjusting negative permittivity with invariant permeability property in metallic granular percolating composites. J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-8027-7

    Article  Google Scholar 

  24. M. Han, X. Yin, X. Li, B. Anasori, L. Zhang, L. Cheng, Y. Gogotsi, Laminated and two-dimensional carbon-supported microwave absorbers derived from MXenes. ACS Appl. Mater. Interfaces 9, 20038–20045 (2017)

    CAS  Google Scholar 

  25. M. Han, X. Yin, Z. Hou, C. Song, X. Li, L. Zhang, L. Cheng, Flexible and thermostable graphene/SiC nanowires foam composites with tunable electromagnetic wave absorption properties. ACS Appl. Mater. Interfaces 9, 11803–11810 (2017)

    CAS  Google Scholar 

  26. M. Han, X. Yin, W. Duan, S. Ren, L. Zhang, L. Cheng, Hierarchical graphene/SiC nanowire networks in polymer-derived ceramics with enhanced electromagnetic wave absorbing capability. J. Eur. Ceram. Soc. 36, 2695–2703 (2016)

    CAS  Google Scholar 

  27. M. Han, X. Yin, S. Ren, W. Duan, L. Zhang, L. Cheng, Core/shell structured C/ZnO nanoparticles composites for effective electromagnetic wave absorption. RSC Adv. 6, 6467–6474 (2016)

    CAS  Google Scholar 

  28. W. Li, U. Guler, N. Kinsey, G.V. Naik, A. Boltasseva, J. Guan, V.M. Shalaev, A.V. Kildishev, Refractory plasmonics with titanium nitride: broadband metamaterial absorber. Adv. Mater. 26, 7959–7965 (2014)

    CAS  Google Scholar 

  29. X. Hou, P. Qiu, T. Yang, K.-C. Chou, Synthesis of titanium nitride nanopowder at low temperature from the combustion synthesized precursor and the thermal stability. J. Alloys Compd. 615, 838–842 (2014)

    CAS  Google Scholar 

  30. M. Cortie, J. Giddings, A. Dowd, Optical properties and plasmon resonances of titanium nitride nanostructures. Nanotechnology 21, 115201 (2010)

    CAS  Google Scholar 

  31. X. Wu, Q. Wang, W. Zhang, Y. Wang, W. Chen, Nano nickel oxide coated graphene/polyaniline composite film with high electrochemical performance for flexible supercapacitor. Electrochim. Acta 211, 1066–1075 (2016)

    CAS  Google Scholar 

  32. Z.B. Wen, F. Yu, T. You, L. Zhu, L. Zhang, Y.P. Wu, A core–shell structured nanocomposite of NiO with carbon nanotubes as positive electrode material of high capacitance for supercapacitors. Mater. Res. Bull. 74, 241–247 (2016)

    CAS  Google Scholar 

  33. H. Haruta, The impedance measurement handbook: a guide to measurement technology and techniques. Agilent Technologies (2000)

  34. C. Cheng, K. Yan, R. Fan, L. Qian, Z. Zhang, K. Sun, M. Chen, Negative permittivity behavior in the carbon/silicon nitride composites prepared by impregnation-carbonization approach. Carbon 96, 678–684 (2016)

    CAS  Google Scholar 

  35. K. Yan, R. Fan, Z. Shi, M. Chen, L. Qian, Y. Wei, K. Sun, J. Li, Negative permittivity behavior and magnetic performance of perovskite La1−xSrxMnO3 at high-frequency. J. Mater. Chem. C 2, 1028–1033 (2014)

    CAS  Google Scholar 

  36. H. Wu, R. Yin, L. Qian, Z. Zhang, Three-dimensional graphene network/phenolic resin composites towards tunable and weakly negative permittivity. Mater. Design 117, 18–23 (2017)

    CAS  Google Scholar 

  37. F. He, S. Lau, H.L. Chan, J. Fan, High dielectric permittivity and low percolation threshold in nanocomposites based on poly(vinylidene fluoride) and exfoliated graphite nanoplates. Adv. Mater. 21, 710–715 (2010)

    Google Scholar 

  38. J. Wang, Z.C. Shi, F. Mao, S. Chen, X. Wang, Bilayer polymer metacomposites containing negative permittivity layer for new high-k materials. ACS Appl. Mater. Interfaces 9, 1793–1800 (2016)

    Google Scholar 

  39. H. Gu, H. Zhang, C. Ma, S. Lyu, F. Yao, C. Liang, X. Yang, J. Guo, Z. Guo, J. Gu, Polyaniline assisted uniform dispersion for magnetic ultrafine barium ferrite nanorods reinforced epoxy metacomposites with tailorable negative permittivity. J. Phys. Chem. C 121, 13265–13273 (2017)

    CAS  Google Scholar 

  40. X. Zhang, X. Yan, Q. He, H. Wei, J. Long, J. Guo, H. Gu, J. Yu, J. Liu, D. Ding, Electrically conductive polypropylene nanocomposites with negative permittivity at low carbon nanotube loading levels. ACS Appl. Mater. Interfaces 7, 6125–6138 (2015)

    CAS  Google Scholar 

  41. Y. Feng, W. Li, Y. Hou, Y. Yu, W. Cao, T. Zhang, W. Fei, Enhanced dielectric properties of PVDF-HFP/BaTiO3-nanowire composites induced by interfacial polarization and wire-shape. J. Mater. Chem. C 3, 1250–1260 (2015)

    CAS  Google Scholar 

  42. C. Wu, X. Huang, X. Wu, L. **e, K. Yang, P. Jiang, Graphene oxide-encapsulated carbon nanotube hybrids for high dielectric performance nanocomposites with enhanced energy storage density. Nanoscale 5, 3847–3855 (2013)

    CAS  Google Scholar 

  43. Z. Wang, K. Sun, P. **e, Y. Liu, R. Fan, Generation mechanism of negative permittivity and Kramers–Kronig relations in BaTiO3/Y3Fe5O12 multiferroic composites. J. Phys.: Condens. Matter 29, 365703 (2017)

    Google Scholar 

  44. J. Zhang, M. Mine, D. Zhu, M. Matsuo, Electrical and dielectric behaviors and their origins in the three-dimensional polyvinyl alcohol/MWCNT composites with low percolation threshold. Carbon 47, 1311–1320 (2009)

    CAS  Google Scholar 

  45. G. Liu, P. Ci, S. Dong, Energy harvesting from ambient low-frequency magnetic field using magneto-mechano-electric composite cantilever. Appl. Phys. Lett. 104, 032908 (2014)

    Google Scholar 

  46. M. Han, X. Yin, L. Kong, M. Li, W. Duan, L. Zhang, L. Cheng, Graphene-wrapped ZnO hollow spheres with enhanced electromagnetic wave absorption properties. J. Mater. Chem. A 2, 16403–16409 (2014)

    CAS  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the National Natural Science Foundation of China [Grant Nos. 51771104 and 51402170].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yao Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3356 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qu, Y., Li, Y., Xu, C. et al. Metacomposites: functional design via titanium nitride/nickel(II) oxide composites towards tailorable negative dielectric properties at radio-frequency range. J Mater Sci: Mater Electron 29, 5853–5861 (2018). https://doi.org/10.1007/s10854-018-8557-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-018-8557-7

Navigation