Log in

Highly sensitive and selective room temperature acetone sensing properties of Co doped ZnO nanostructure films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This work presents an improvement in room temperature gas sensing properties of ZnO thin film samples as an impact of cobalt do**. The response of films towards various gases (xylene, toluene, isopropanol, methanol, ethanol and Acetone) were studied. Thin films samples were prepared using the spray pyrolysis technique. XRD patterns revealed hexagonal (wurtzite) structure of prepared film samples. UV–Vis spectra showed the reduction of the energy band gap with cobalt do**. Different modes in the Raman spectra were observed in the vibrational analysis of the samples. A spindle-like morphology with enhanced surface granularity is observed with cobalt incorporation. This research extensively studied the response of thin films to different acetone gas concentrations at room temperature. At 50 ppm acetone concentration, 3% Co doped ZnO thin films showed a maximum response of 185. Also, Co doped ZnO film shows good selectivity towards acetone as compared to other gases. The obtained results brought attention to the potential utilization of cobalt doped ZnO thin films in develo** gas sensing devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable.

References

  1. A.M. Subramanian, S. Nagarajan, S. Vinod, K. Chakraborty, T. Sivagami, Theodore, Long-term impacts of climate change on coastal and transitional eco-systems in India: an overview of its current status, future projections, solutions, and policies. RSC Adv. 13, 12204–12228 (2023). https://doi.org/10.1039/d2ra07448f

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. E. David, V.-C. Niculescu, Volatile Organic compounds (VOCs) as environmental pollutants: occurrence and mitigation using nanomaterials. Int. J. Environ. Res. Public Health. 18, 13147 (2021). https://doi.org/10.3390/ijerph182413147

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. W. Zhang, X. Wang, J. Wu, X. Wang, X. Lv, G. Liu, Electrospun Nb-doped CeO2 nanofibers for humidity independent acetone sensing. Appl. Surf. Sci. 602, 154303 (2022). https://doi.org/10.1016/j.apsusc.2022.154303

    Article  CAS  Google Scholar 

  4. X. Chang, S. Xu, S. Liu, N. Wang, S. Sun, X. Zhu et al., Highly sensitive acetone sensor based on WO3 nanosheets derived from WS2 nanoparticles with inorganic fullerene-like structures. Sens. Actuators B 343, 130135 (2021). https://doi.org/10.1016/j.snb.2021.130135

    Article  CAS  Google Scholar 

  5. M. Dadkhah, Nanostructured metal oxide semiconductors towards greenhouse gas detection. Chemosensors 10(2), 57 (2022). https://doi.org/10.3390/chemosensors10020057

    Article  CAS  Google Scholar 

  6. Z. Jiang, B. Liu, L. Yu, Y. Tong, M. Yan, R. Zhang, W. Han, Research progresses in preparation methods and applications of zinc oxide nanoparticles. J. Alloys Compd. 956, 170316 (2023). https://doi.org/10.1016/j.jallcom.2023.170316

    Article  CAS  Google Scholar 

  7. X. Zhou, A. Wang, Y. Wang, L. Bian, Z. Yang, Y. Bian, Y. Gong, X. Wu, N. Han, Y. Chen, Crystal-defect-dependent gas-sensing mechanism of the single ZnO Nanowire Sensors. ACS Sens. 3(11), 2385–2393 (2018). https://doi.org/10.1021/acssensors.8b00792

    Article  CAS  PubMed  Google Scholar 

  8. P. Chesler, C. Hornoiu, MOX-Based resistive gas sensors with different types of sensitive materials (powders, pellets, films), used in Environmental Chemistry. Chemosensors. 11(2), 95 (2023). https://doi.org/10.3390/chemosensors11020095

    Article  CAS  Google Scholar 

  9. T. Zhou, T. Zhang, Recent progress of Nanostructured sensing materials from 0d to 3D: overview of structure–property-application relationship for gas sensors. Small Methods. 5(9), 2100515 (2021). https://doi.org/10.1002/smtd.202100515

    Article  CAS  Google Scholar 

  10. P. Nakarungsee, S. Srirattanapibul, C. Issro, I.-M. Tang, S. Thongmee, High performance cr doped ZnO by UV for NH3 Gas Sensor. Sens. Actuators A: Phys. 314, 112230 (2020). https://doi.org/10.1016/j.sna.2020.112230

    Article  CAS  Google Scholar 

  11. K. Suganthi, E. Vinoth, L. Sudha, P. Bharathi, M. Navaneethan, Manganese (mn 2+) doped hexagonal prismatic zinc oxide (ZnO) nanostructures for chemiresistive NO2 sensor. Sens. Actuators B 380, 133293 (2023). https://doi.org/10.1016/j.snb.2023.133293

    Article  CAS  Google Scholar 

  12. R. John, A. Alice, J. Ruban Kumar, Shruthi, M.V. Ramana, Reddy, FeXZn1-xOy as room temperature dual sensor for formaldehyde and ammonia gas detection. Inorg. Chem. Commun. 141, 109506 (2022). https://doi.org/10.1016/j.inoche.2022.109506

    Article  CAS  Google Scholar 

  13. S. Pan, Y. Guo, G. Chen, L. Sun, J. Huang, L. Wang, L. Cheng, MOFs-derived synthesis of Ni-doped ZnO nanostructutred material towards excellent n-butanol sensing performance and long-term stability. J. Mater. Sci.: Mater. Electron. 33(10), 7501–7514 (2022). https://doi.org/10.1007/s10854-022-07888-5

    Article  CAS  Google Scholar 

  14. S.D. Lokhande, M.B. Awale, V.D. Mote, Optical and gas sensing properties of Cu-Doped ZnO nanocrystalline thin films for sensor applications. J. Mater. Sci.: Mater. Electron. 33, 25063–25077 (2022). https://doi.org/10.1007/s10854-022-09213-6

    Article  CAS  Google Scholar 

  15. W. Niu, K. Kang, Y. Ou, Y. Ding, B. Du, X. Guo, Y. Tan et al., Cobalt ions Induced morphology control of metal-organic framework-derived indium oxide nanostructures for high performance hydrogen sulfide gas sensors. Sens. Actuators B 381, 133347 (2023). https://doi.org/10.1016/j.snb.2023.133347

    Article  CAS  Google Scholar 

  16. Y. Luo, A. Ly, D. Lahem, D.M. Justin, A.-C. Martin, C. Romain, C. Zhang, M. Debliquy, Role of cobalt in Co-ZnO nanoflower gas sensors for the detection of low concentration of vocs. Sens. Actuators B 360, 131674 (2022). https://doi.org/10.1016/j.snb.2022.131674

    Article  CAS  Google Scholar 

  17. Y. Fan, Y. Xu, Y. Wang, Y. Sun, Fabrication and characterization of Co-doped ZnO Nanodiscs for Selective Tea Sensor applications with high response, high selectivity and ppb-level detection limit. J. Alloys Compd. 876, 160170 (2021). https://doi.org/10.1016/j.jallcom.2021.160170

    Article  CAS  Google Scholar 

  18. J. Rodrigues, Detection of trimethylamine (TMA) gas using mixed shape cobalt doped ZnO nanostructure. Mater. Chem. Phys. 305, 127972 (2023). https://doi.org/10.1016/j.matchemphys.2023.127972

    Article  CAS  Google Scholar 

  19. E. Chubenko, M.W. Alhamd, V. Bondarenko, Optical properties of hydrothermally deposited Ni and Co doped nanostructured ZnO thin films as scintillating coatings for beta-particles detection. J. Lumin. 247, 118860 (2022). https://doi.org/10.1016/j.jlumin.2022.118860

    Article  CAS  Google Scholar 

  20. P. Kumar, P. Nisha, S. Sarkar, B.C. Singh, Mishra, R.S. Katiyar, The influence of post-growth heat treatment on the optical properties of pulsed laser deposited ZnO thin films. Appl. Phys. A 128, 5 (2022). https://doi.org/10.1007/s00339-022-05511-2

    Article  CAS  Google Scholar 

  21. Y. Kim, Characterization of Ni–CO Thin Film and its applications to multifunctional substrates of flexible microdevices. Sens. Actuators A: Phys. 333, 113295 (2022). https://doi.org/10.1016/j.sna.2021.113295

    Article  CAS  Google Scholar 

  22. U.C. Matur, I.P. Duru, D. Akcan, Tracking Optical properties of ZnO:mg thin films: experimental and first principles calculations. Ceram. Int. 48(13), 19090–19097 (2022). https://doi.org/10.1016/j.ceramint.2022.03.199

    Article  CAS  Google Scholar 

  23. H. Fayaz Rouhi, S.M. Rozati, Synthesis and investigating effect of tellurium-do** on physical properties of zinc oxide thin films by spray pyrolysis technique. Appl. Phys. A (2022). https://doi.org/10.1007/s00339-022-05377-4

    Article  Google Scholar 

  24. A.B. Workie, H.S. Ningsih, S.-J. Shih, A Comprehensive Review on the spray pyrolysis technique: historical context, operational factors, classifications, and product applications. J. Anal. Appl. Pyrol. 170, 105915 (2023). https://doi.org/10.1016/j.jaap.2023.105915

    Article  CAS  Google Scholar 

  25. S.B. Rana, R.P. Singh, S. Arya, Structural, optical, magnetic and antibacterial study of pure and cobalt doped ZnO nanoparticles. J. Mater. Sci.: Mater. Electron. 28(3), 2660–2672 (2016). https://doi.org/10.1007/s10854-016-5843-0

    Article  CAS  Google Scholar 

  26. P. Singh, N. Kumar, S.K. Singh, M. Singh, Singh, P. Tandon, Co-doped ZnO nanostructures for liquefied petroleum gas sensing at room temperature. J. Mater. Sci.: Mater. Electron. 34, 10 (2023). https://doi.org/10.1007/s10854-023-10344-7

    Article  CAS  Google Scholar 

  27. V. Vinitha, M. Preeyanghaa, M. Anbarasu, B. Neppolian, V. Sivamurugan, Chemical recycling of polyester textile wastes using silver-doped zinc oxide nanoparticles: an economical solution for circular economy. Environ. Sci. Pollut. Res. (2023). https://doi.org/10.1007/s11356-023-27567-0

    Article  Google Scholar 

  28. A. Goktas, S. Modanlı, A. Tumbul, A. Kilic, Facile synthesis and characterization of ZnO, ZnO:Co, and ZnO/ZnO:Co nano rod-like homojunction thin films: role of crystallite/grain size and microstrain in photocatalytic performance. J. Alloys Compd. 893, 162334 (2022). https://doi.org/10.1016/j.jallcom.2021.162334

    Article  CAS  Google Scholar 

  29. K. Singh, N.H. Kaur, P.K. Sharma, G. Singh, J. Singh, ZnO and cobalt decorated ZnO NPS: synthesis, photocatalysis and antimicrobial applications. Chemosphere 313, 137322 (2023). https://doi.org/10.1016/j.chemosphere.2022.137322

    Article  CAS  PubMed  Google Scholar 

  30. M. Awale, S.D. Lokhande, S.S. Jadhav, S.B. Kadam, V.D. Mote, A.B. Kadam, Effect on ethanol sensing ability of zinc oxide thin films with manganese do**. J. Mater. Sci.: Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10407-9

    Article  Google Scholar 

  31. M. Ashokkumar, C. Muthusamy, Role of ionic radii and electronegativity of co-dopants (Co, Ni and Cr) on properties of Cu doped ZnO and evaluation of in-vitro cytotoxicity. Surf. Interfaces 30, 101968 (2022). https://doi.org/10.1016/j.surfin.2022.101968

    Article  CAS  Google Scholar 

  32. S.D. Lokhande, M.B. Awale, G. Umadevi, V.D. Mote, Effect of Ni do** on structural, optical and gas sensing properties of ZnO films for the development of acetone sensor devices. Mater. Chem. Phys. 301, 127667 (2023). https://doi.org/10.1016/j.matchemphys.2023.127667

    Article  CAS  Google Scholar 

  33. B. Altun, I.K. Er, A.O. Çağırtekin, A. Ajjaq, F. Sarf, S. Acar, Effect of cd dopant on structural, optical and CO2 gas sensing properties of ZnO thin film sensors fabricated by chemical bath deposition method. Appl. Phys. A 127, 9 (2021). https://doi.org/10.1007/s00339-021-04843-9

    Article  CAS  Google Scholar 

  34. A.L. Naim, A.F.A. Solieman, E.R. Shaaban, Structural, optical, and magnetic properties of co-doped ZnO nanocrystalline thin films for spintronic devices. J. Mater. Sci.: Mater. Electron. 31(4), 3613–3621 (2020). https://doi.org/10.1007/s10854-020-02916-8

    Article  CAS  Google Scholar 

  35. N. Ben Elkamel, Imen, A. Hamdaoui, R. Mezni, Ajjel, L. Beji, High responsivity and 1/f noise of an ultraviolet photodetector based on Ni doped ZnO nanoparticles. RSC Adv. 8(56), 32333–32343 (2018). https://doi.org/10.1039/c8ra05567j

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. S. Kammoun, J. El Ghoul, Structural and optical investigation of Co-doped ZnO nanoparticles for nanooptoelectronic devices. J. Mater. Sci.: Mater. Electron. 32(6), 7215–7225 (2021). https://doi.org/10.1007/s10854-021-05430-7

    Article  CAS  Google Scholar 

  37. T. Elavarasan, S. Ernest, S. Fairose, Influence of cobalt do** on the structural optical topographical and sensing properties of spray deposited zinc oxide thin films. Mater. Today: Proceed. 38, 2720–2724 (2021). https://doi.org/10.1016/j.matpr.2020.08.529

    Article  CAS  Google Scholar 

  38. P. Kumar, V. Chauhan, P.C. Panday, Role of dysprosium do** concentration on structural deformation of zinc oxide nanoparticles. Phys. B: Condens. Matter 621, 413313 (2021). https://doi.org/10.1016/j.physb.2021.413313

    Article  CAS  Google Scholar 

  39. E. Naik, H.S. Indrajith, M.S. Bhojya Naik, Sarvajith, E. Pradeepa, Co-precipitation synthesis of cobalt doped ZnO nanoparticles: characterization and their applications for biosensing and antibacterial studies. Inorg. Chem. Commun. 130, 108678 (2021). https://doi.org/10.1016/j.inoche.2021.108678

    Article  CAS  Google Scholar 

  40. S. Jaballah, M. Benamara, H. Dahman, A. Ly, D. Lahem, M. Debliquy, L. El Mir, Effect of Mg-do** ZnO nanoparticles on detection of low ethanol concentrations. Mater. Chem. Phys. 255, 123643 (2020). https://doi.org/10.1016/j.matchemphys.2020.123643

    Article  CAS  Google Scholar 

  41. S. Lal, R. Verma, A. Chauhan, J. Dhatwalia, I. Guleria, S. Ghotekar, S. Thakur et al., Antioxidant, antimicrobial, and photocatalytic activity of green synthesized ZnO-NPS from Myrica esculenta fruits extract. Inorg. Chem. Commun. 141, 109518 (2022). https://doi.org/10.1016/j.inoche.2022.109518

    Article  CAS  Google Scholar 

  42. Z. Aghagoli, M. Ardyanian, Synthesis and study of the structure, magnetic, optical and methane gas sensing properties of cobalt doped zinc oxide microstructures. J. Mater. Sci.: Mater. Electron. 29(9), 7130–7141 (2018). https://doi.org/10.1007/s10854-018-8701-4

    Article  CAS  Google Scholar 

  43. B. Salameh, A.M. Alsmadi, M. Shatnawi, Effects of Co concentration and annealing on the magnetic properties of Co-doped ZnO films: role of oxygen vacancies on the ferromagnetic ordering. J. Alloys Compd. 835, 155287 (2020). https://doi.org/10.1016/j.jallcom.2020.155287

    Article  CAS  Google Scholar 

  44. P. Batista-Grau, R. Sánchez-Tovar, R.M. Fernández-Domene, J. García-Antón, Formation of ZnO nanowires by anodization under hydrodynamic conditions for photoelectrochemical water splitting. Surf. Coat. Technol. 381, 125197 (2020). https://doi.org/10.1016/j.surfcoat.2019.125197

    Article  CAS  Google Scholar 

  45. M. Murthy, V. Narasimha, G. Ganesh, S. Ravinder, G. Anusha, Chandrakala, C.J. Sreelatha, Sol–Gel synthesized ZnO thin films doped with Rb and Al for self-cleaning antibacterial applications. J. Solgel Sci. Technol. (2023). https://doi.org/10.1007/s10971-023-06044-7

    Article  PubMed  Google Scholar 

  46. J. Sahu, S. Soni, S. Kumar, B. Dalela, P.A. Alvi, S.S. Sharma, D.M. Phase, M. Gupta, S. Kumar, S. Dalela, Defects and oxygen vacancies tailored structural, optical and electronic structure properties of Co-doped ZnO nanoparticle samples probed using soft X-Ray absorption spectroscopy. Vacuum. 179, 109538 (2020). https://doi.org/10.1016/j.vacuum.2020.109538

    Article  CAS  Google Scholar 

  47. F.A. Taher, E. Abdeltwab, Shape-controlled synthesis of nanostructured Co-doped ZnO thin films and their magnetic properties. CrystEngComm 20(38), 5844–5856 (2018). https://doi.org/10.1039/c8ce00738a

    Article  CAS  Google Scholar 

  48. M. Kaur, V. Kumar, P. Kaur, M. Lal, P. Negi, R. Sharma, Effect on the dielectric properties due to in–N co-do** in ZnO particles. J. Mater. Sci.: Mater. Electron. 32(7), 8991–9004 (2021). https://doi.org/10.1007/s10854-021-05570-w

    Article  CAS  Google Scholar 

  49. A. Bashir, A. Majeed, S. Naseem, Investigation of Structural and optical parameters of Yttrium-doped ZnO thin films prepared via spin coating of simple aqueous solution. Bull. Mater. Sci. (2021). https://doi.org/10.1007/s12034-021-02391-9

    Article  Google Scholar 

  50. V.M. Vimuna, R. Sreeja Sreedharan, R. Resmi Krishnan, V.S. Kavitha, S.R. Chalana, S. Suresh, V.P. Mahadevan Pillai, Study on the structural, morphological and optical properties of RF sputtered gallium doped zinc oxide thin films. Mater. Today: Proceed. 4(2), 4417–4433 (2017). https://doi.org/10.1016/j.matpr.2017.04.014

    Article  Google Scholar 

  51. P.P. Patel, P.J. Hanumantha, O.I. Velikokhatnyi, M.K. Datta, D. Hong, B. Gattu, J.A. Poston, A. Manivannan, P.N. Kumta, Nitrogen and cobalt co-doped zinc oxide nanowires—viable photoanodes for hydrogen generation via photoelectrochemical water splitting. J. Power Sources 299, 11–24 (2015). https://doi.org/10.1016/j.jpowsour.2015.08.027

    Article  CAS  Google Scholar 

  52. J. Hu, F. Gao, Z. Zhao, S. Sang, P. Li, W. Zhang, **ongtu Zhou, and, Y. Chen, Synthesis and characterization of cobalt-doped ZnO microstructures for methane gas sensing. Appl. Surf. Sci. 363, 181–188 (2016). https://doi.org/10.1016/j.apsusc.2015.12.024

    Article  CAS  Google Scholar 

  53. J. Xuan, G. Zhao, Q. Gong, L. Wang, J. Ren, M. Sun, T. Zhou, F. **ng, B. Liu, Fabrication of in-situ grown and Pt-decorated ZnO nanoclusters on new-type FTO electrode for room-temperature detection of low-concentration H2S. J. Alloys Compd. 860, 158499 (2021). https://doi.org/10.1016/j.jallcom.2020.158499

    Article  CAS  Google Scholar 

  54. T. Karthik, M. Venkata, A. Olvera, R.R. Maldonado, Biswal, Undoped and nickel-doped zinc oxide thin films deposited by dip coating and ultrasonic spray pyrolysis methods for propane and carbon monoxide sensing applications. Sensors 20(23), 6879 (2020). https://doi.org/10.3390/s20236879

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. K. Krishna, G. Gopi, S. Umadevi, Parne, N. Pothukanuri, Zinc oxide based gas sensors and their derivatives: a critical review. J. Mater. Chem. C 11(12), 3906–3925 (2023). https://doi.org/10.1039/d2tc04690c

    Article  CAS  Google Scholar 

  56. A. Hastir, N. Kohli, Temperature dependent selective and sensitive terbium doped ZnO nanostructures. Sens. Actuators B 231, 110–119 (2016). https://doi.org/10.1016/j.snb.2016.03.001

    Article  CAS  Google Scholar 

  57. Y. Li, S. Wang, P. Hao, J. Tian, H. Cui, X. Wang, Soft-templated formation of double-shelled ZnO hollow microspheres for acetone gas sensing at low concentration/near room temperature. Sens. Actuators: Chem. 273, 751–759 (2018). https://doi.org/10.1016/j.snb.2018.06.110

    Article  CAS  Google Scholar 

  58. W. Zhang, L. Song, D. Zhao, T. Liu, H. Jiang, W. Yang, B. Zhao, W. Huang, P. Wang, L. Sui, Construction of hierarchical ZnO Flower-like structure for Boost H2S detection at low temperature. Sens. Actuators B 385, 133728 (2023). https://doi.org/10.1016/j.snb.2023.133728

    Article  CAS  Google Scholar 

  59. C.-N. Wang, Y.L. Li, F.L. Gong, Y.H. Zhang, S.-M. Fang, H.-L. Zhang, Advances in Doped ZnO nanostructures for gas sensor. Chem. Record 20, 1553–1567 (2020). https://doi.org/10.1002/tcr.202000088

    Article  CAS  Google Scholar 

  60. R.C. Ramola, S. Negi, R.C. Singh, F. Singh, Gas sensing response of ion beam irradiated Ga-doped ZnO thin films. Sci. Rep. (2022). https://doi.org/10.1038/s41598-022-26948-8

    Article  PubMed  PubMed Central  Google Scholar 

  61. S. Sun, M. Wang, X. Chang, Y. Jiang, D. Zhang, D. Wang, Y. Zhang, Y. Lei, W18O49/Ti3c2tx mxene nanocomposites for highly sensitive acetone gas sensor with low detection limit. Sens. Actuators B 304, 127274 (2020). https://doi.org/10.1016/j.snb.2019.127274

    Article  CAS  Google Scholar 

  62. X. Kou, N. **. Sens. Actuators B 256, 861–869 (2018). https://doi.org/10.1016/j.snb.2017.10.011

    Article  CAS  Google Scholar 

  63. S. Zhang, M. Yang, K. Liang, A. Turak, B. Zhang, D. Meng, C. Wang, F. Qu, W. Cheng, M. Yang, An acetone gas sensor based on nanosized PT-loaded Fe2O3 nanocubes. Sens. Actuators B 290, 59–67 (2019). https://doi.org/10.1016/j.snb.2019.03.082

    Article  CAS  Google Scholar 

  64. S. Cao, N. Sui, P. Zhang, T. Zhou, J. Tu, T. Zhang, TiO2 nanostructures with different crystal phases for sensitive acetone gas sensors. J. Colloid Interface Sci. 607, 357–366 (2022). https://doi.org/10.1016/j.jcis.2021.08.215

    Article  CAS  PubMed  Google Scholar 

  65. Y. Gong, X. Wu, X. Li, A. Wang, M. Zhang, Y. Chen, Enhanced acetone sensing properties of pt@al-doped ZnO core-shell nanoparticles. Sens. Actuators B Chem. 329, 129–153 (2021). https://doi.org/10.1016/j.snb.2020.129153

    Article  CAS  Google Scholar 

  66. El Z. Khalidi, B. Hartiti, M. Siadat, E. Comini, H.M. Arachchige, S. Fadili, P. Thevenin, Acetone sensor based on Ni doped ZnO nanostructures: growth and sensing capability. J. Mater. Sci.: Mater. Electron. 30(8), 7681–7690 (2019). https://doi.org/10.1007/s10854-019-01083-9

    Article  CAS  Google Scholar 

  67. Y. Chen, H. Li, D. Huang, X. Wang, Y. Wang, W. Wang, M. Yi, Q. Cheng, Y. Song, G. Han, Highly sensitive and selective acetone gas sensors based on modified ZnO nanomaterials. Mater. Sci. Semiconduct. Process. 148, 106807 (2022). https://doi.org/10.1016/j.mssp.2022.106807

    Article  CAS  Google Scholar 

  68. J. Du, R. Zhao, S. Chen, H. Wang, J. Li, Z. Zhu, Self-assembly of gridlike zinc oxide lamellae for chemical-sensing applications. ACS Appl. Mater. Interfaces. 7, 5870–5878 (2015). https://doi.org/10.1021/am509139f

    Article  CAS  PubMed  Google Scholar 

  69. H. Zhang, S. Wu, J. Liu, Y. Cai, C. Liang, Laser irradiation-induced Au–ZnO nanospheres with enhanced sensitivity and stability for ethanol sensing. Phys. Chem. Chem. Phys. 18, 22503–22508 (2016). https://doi.org/10.1039/c6cp03487j

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

MBA—Synthesis, characterization, analysis, formal writing, SDL—Analysis, final writing, SBK—Final drafting, VDM—Supervision of scientific, editing, ABK—Supervision, editing and reviewing.

Corresponding authors

Correspondence to V. D. Mote or A. B. Kadam.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare relevant to this article’s content. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Awale, M., Lokhande, S.D., Kadam, S.B. et al. Highly sensitive and selective room temperature acetone sensing properties of Co doped ZnO nanostructure films. J Mater Sci: Mater Electron 35, 1209 (2024). https://doi.org/10.1007/s10854-024-12912-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-12912-x

Navigation