Log in

A study on room temperature acetone sensing ability of Zn1–xNixO thin films and probing their properties for progressive sensor technology

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

The study investigates the impact of nickel do** on the structural, optical, morphological, and gas sensing properties of zinc oxide (ZnO) thin films. Films were synthesized using a spray pyrolysis technique on a glass substrate. Structural and morphological analyses were conducted through X-ray diffraction (XRD) and field emission scanning electron microscopy (FESEM). XRD revealed a hexagonal wurtzite structure, primarily aligned along (101) planes. However, nickel do** prompted a preferred orientation towards (002) plane. Lattice parameters decreased systematically, due to the ionic radii mismatch between dopant and host. FESEM showed a nanoflake morphology. Compositional analysis with energy dispersive X-ray spectroscopy (EDX) confirmed successful do**. Optical analysis using UV–Vis spectroscopy indicated high transmission in undoped ZnO films. However reduced band gap values have been reduced with nickel incorporation. Gas sensing response observed to be significantly improved with Nickel do** in ZnO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The data that support the findings of this study are not openly available due to reasons of sensitivity and are available from the corresponding author upon reasonable.

References

  1. N. Nasiri, C. Clarke, Nanostructured gas sensors for medical and health applications: low to high dimensional materials. Biosensors 9, 43 (2019). https://doi.org/10.3390/bios9010043

    Article  Google Scholar 

  2. C. Li, P.G. Choi, Y. Masuda, Large-lateral-area SnO2 nanosheets with a loose structure for high-performance acetone sensor at the PPT level. J. Hazard. Mater. 455, 131592 (2023). https://doi.org/10.1016/j.jhazmat.2023.131592

    Article  Google Scholar 

  3. J. Bhaliya, V. Shah, G. Patel, Functionalized nanofibers for gas and volatile organic compound sensing. Functionalized Nanofibers. (2023). https://doi.org/10.1016/b978-0-323-99461-3.00030-3

    Article  Google Scholar 

  4. S. Gupta Chatterjee, S. Chatterjee, A.K. Ray, A.K., Chakraborty, Graphene–metal oxide nanohybrids for toxic gas sensor: a review. Sens. Actuators B Chem. 221, 1170–1181 (2015). https://doi.org/10.1016/j.snb.2015.07.070

    Article  Google Scholar 

  5. S. Agarwal, P. Rai, E.N. Gatell, E. Llobet, F. Güell, M. Kumar et al., Gas sensing properties of ZnO nanostructures (flowers/rods) synthesized by hydrothermal method. Sens. Actuators B Chem. 292, 24–31 (2019). https://doi.org/10.1016/j.snb.2019.04.083

    Article  Google Scholar 

  6. D. Nagmani, A. Pravarthana, T.C. Tyagi, W. Jagadale, D.K. Prellier, Aswal, highly sensitive and selective H2S gas sensor based on Tio2 thin films. Appl. Surf. Sci. 549, 149281 (2021). https://doi.org/10.1016/j.apsusc.2021.149281

    Article  Google Scholar 

  7. H. Abdollahi, M. Samkan, M.M. Hashemi, Fabrication of RGO nano-sheets wrapped on Ni doped ZnO nanowire P-N heterostructures for hydrogen gas sensing. New J. Chem. 43, 19253–19264 (2019). https://doi.org/10.1039/c9nj05152j

    Article  Google Scholar 

  8. S. Mahajan, S. Jagtap, Metal-oxide semiconductors for carbon monoxide (CO) gas sensing: a review. Appl. Mater. Today 18, 100483 (2020). https://doi.org/10.1016/j.apmt.2019.100483

    Article  Google Scholar 

  9. J.-H. Lin, T. Yang, X. Zhang, B.-C. Shiu, C.-W. Lou, T.-T. Li, MN-doped ZnO/SnO2-based yarn sensor for ammonia detection. Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.07.222

    Article  Google Scholar 

  10. A.M. Abdelraheem, M.A. Abdel-Rahim, D. Hamad, A.M. Abd-Elnaiem, Physical characterizations and methane gas–sensing of Al Zn1-o nanoparticles. Appl. Surf. Sci. 619, 156729 (2023). https://doi.org/10.1016/j.apsusc.2023.156729

    Article  Google Scholar 

  11. S. Liu, W. Yang, L. Liu, H. Chen, Y. Liu, Enhanced H2S gas-sensing performance of Ni-doped ZnO nanowire arrays. ACS Omega 8, 7595–7601 (2023). https://doi.org/10.1021/acsomega.2c07092

    Article  Google Scholar 

  12. P.K. Singh, N. Singh, S.K. Singh, M. Singh, P. Tandon, Co-doped ZnO nanostructures for liquefied petroleum gas sensing at room temperature. J. Mater. Sci. Mater. Electron. (2023). https://doi.org/10.1007/s10854-023-10344-7

    Article  Google Scholar 

  13. W.A. dos Santos Silva, B.S. de Lima, M.I. Bernardi, V.R. Mastelaro, Enhancement of the ozone-sensing properties of ZnO through chemical-etched surface texturing. J. Nanopart. Res.Nanopart. Res. (2022). https://doi.org/10.1007/s11051-022-05479-3

    Article  Google Scholar 

  14. S. Jain et al., Development of ni doped ZnO/polyaniline nanocomposites as high response room temperature NO2 sensor. Mater. Sci. Eng. B 247, 114381 (2019). https://doi.org/10.1016/j.mseb.2019.114381

    Article  Google Scholar 

  15. H. Liu, Q. Zhou, H. Wei, W. Hu, L. Xu, C. Tang et al., A comparative study of zinc oxide based chemical gas sensors for sulfur dioxide detection. Sens. Lett. 15, 384–388 (2017). https://doi.org/10.1166/sl.2017.3789

    Article  Google Scholar 

  16. M. Que, C. Lin, J. Sun, L. Chen, X. Sun, Y. Sun, Progress in ZnO nanosensors. Sensors. 21, 5502 (2021). https://doi.org/10.3390/s21165502

    Article  ADS  Google Scholar 

  17. S.V. Trukhanov, A.V. Trukhanov, V.G. Kostishyn, N.S. Zabeivorota, L.V. Panina, A.V. Trukhanov et al., High-frequency absorption properties of gallium weakly doped barium hexaferrites. Philos. Mag. 99, 585–605 (2018). https://doi.org/10.1080/14786435.2018.1547431

    Article  ADS  Google Scholar 

  18. D.A. Vinnik, AYu. Starikov, V.E. Zhivulin, K.A. Astapovich, V.A. Turchenko, T.I. Zubar et al., Changes in the structure, magnetization, and resistivity of BaFe12– xTixO. ACS Appl. Electron. Mater. 3, 1583–1593 (2021). https://doi.org/10.1021/acsaelm.0c01081

    Article  Google Scholar 

  19. F.G. Agayev, S.V. Trukhanov, A.V. Trukhanov, S.H. Jabarov, G.S. Ayyubova, M.N. Mirzayev et al., Study of structural features and thermal properties of barium hexaferrite upon indium do**. J. Therm. Anal. Calorim.Calorim. 147, 14107–14114 (2022). https://doi.org/10.1007/s10973-022-11742-5

    Article  Google Scholar 

  20. R.E. El-Shater, A.S. Atlam, M.K. Elnimr, S.T. Assar, D.I. Tishkevich, T.I. Zubar et al., AC measurements, impedance spectroscopy analysis, and magnetic properties of Ni0.5Zn0.5Fe2O4/BaTiO3 Multiferroic Composites. Mater. Sci. Eng. B 286, 116025 (2022). https://doi.org/10.1016/j.mseb.2022.116025

    Article  Google Scholar 

  21. A.L. Kozlovskiy, M.V. Zdorovets, Effect of do** of Ce4+/3+ on optical, strength and shielding properties of (0.5–x)TeO2–0.25MoO-0.25Bi2O3-xCeO2 glasses. Mater. Chem. Phys. 263, 124444 (2021). https://doi.org/10.1016/j.matchemphys.2021.124444

    Article  Google Scholar 

  22. M.A. Darwish, T.I. Zubar, O.D. Kanafyev, D. Zhou, E.L. Trukhanova, S.V. Trukhanov et al., Combined effect of microstructure, surface energy, and adhesion force on the friction of PVA/Ferrite Spinel nanocomposites. Nanomaterials 12, 1998 (2022). https://doi.org/10.3390/nano12121998

    Article  Google Scholar 

  23. A.M. Henaish, M.A. Darwish, O.M. Hemeda, I.A. Weinstein, T.S. Soliman, A.V. Trukhanov et al., Structure and optoelectronic properties of ferroelectric PVA-PZT Nanocomposites. Opt. Mater. 138, 113402 (2023). https://doi.org/10.1016/j.optmat.2022.113402

    Article  Google Scholar 

  24. A. Murtaza, W. Zuo, X. Song, A. Ghani, A. Saeed, M. Yaseen et al., Robust ferromagnetism in rare-earth and transition metal co-doped ZnO nanoparticles for Spintronics applications. Mater. Lett. 310, 131479 (2022). https://doi.org/10.1016/j.matlet.2021.131479

    Article  Google Scholar 

  25. R. Röder, S. Geburt, M. Zapf, D. Franke, M. Lorke, T. Frauenheim et al., Transition metal and rare earth element doped zinc oxide nanowires for optoelectronics. Phys. Status Solidi (b). 256, 1800604 (2019). https://doi.org/10.1002/pssb.201800604

    Article  ADS  Google Scholar 

  26. P. Singh, R. Kumar, R.K. Singh, Progress on transition metal-doped ZnO nanoparticles and its application. Ind. Eng. Chem. Res. 58, 17130–17163 (2019). https://doi.org/10.1021/acs.iecr.9b01561

    Article  Google Scholar 

  27. H.Y. Salah, M. Bakry, M. Kubas, W. Ismail, M.I. El-Henawey, A.H. Oraby et al., Improvement of the structural, morphological, optical, and photoelectrochemical properties of al-doped ZnO nanorods for use in biosensors and solar cells. Eur. Phys. J. Plus. (2022). https://doi.org/10.1140/epjp/s13360-022-03532-7

    Article  Google Scholar 

  28. K. Qi, X. **ng, A. Zada, M. Li, Q. Wang, S. Liu et al., Transition metal doped ZnO nanoparticles with enhanced photocatalytic and antibacterial performances: experimental and DFT Studies. Ceram. Int. 46, 1494–1502 (2020). https://doi.org/10.1016/j.ceramint.2019.09.116

    Article  Google Scholar 

  29. Y. Luo, A. Ly, D. Lahem, C. Zhang, M. Debliquy, A novel low-concentration isopropanol gas sensor based on Fe-doped ZnO nanoneedles and its gas sensing mechanism. J. Mater. Sci. 56, 3230–3245 (2020). https://doi.org/10.1007/s10853-020-05453-1

    Article  ADS  Google Scholar 

  30. S. Zhu, L. Xu, S. Yang, X. Zhou, X. Chen, B. Dong et al., Cobalt-doped ZnO nanoparticles derived from zeolite imidazole frameworks: synthesis, characterization, and application for the detection of an exhaled diabetes biomarker. J. Colloid Interface Sci. 569, 358–365 (2020). https://doi.org/10.1016/j.jcis.2020.02.081

    Article  ADS  Google Scholar 

  31. Y.-L. Chu, L.-W. Ji, Y.-J. Hsiao, H.-Y. Lu, S.-J. Young, I.-T. Tang et al., Fabrication and characterization of ni-doped ZnO Nanorod arrays for UV photodetector application. J. Electrochem. Soc.Electrochem. Soc. 167, 067506 (2020). https://doi.org/10.1149/1945-7111/ab7d43

    Article  ADS  Google Scholar 

  32. O. Alev, N. Sarıca, O. Özdemir, L.Ç. Arslan, S. Büyükköse, Z.Z. Öztürk, Cu-doped ZnO nanorods based QCM sensor for hazardous gases. J. Alloy. Compd. 826, 154177 (2020). https://doi.org/10.1016/j.jallcom.2020.154177

    Article  Google Scholar 

  33. V.L. Patil, D.S. Dalavi, S.B. Dhavale, S.A. Vanalakar, N.L. Tarwal, A.S. Kalekar et al., Indium doped ZnO nanorods for chemiresistive No2 gas sensors. New J. Chem. 46, 7588–7597 (2022). https://doi.org/10.1039/d2nj00114d

    Article  Google Scholar 

  34. Z. El khalidi, B. Hartiti, M. Siadat, E. Comini, H.M. Arachchige, S. Fadili et al., Acetone sensor based on ni doped ZnO nanostructues: growth and sensing capability. J. Mater. Sci. Mater. Electron. 30, 7681–7690 (2019). https://doi.org/10.1007/s10854-019-01083-9

    Article  Google Scholar 

  35. M. Xu, Q. Li, Y. Ma, H. Fan, Ni-doped ZnO nanorods gas sensor: enhanced gas-sensing properties, AC and DC electrical behaviors. Sens. Actuators, B Chem. 199, 403–409 (2014). https://doi.org/10.1016/j.snb.2014.03.108

    Article  Google Scholar 

  36. A. Hastir, N. Kohli, R.C. Singh, Comparative study on gas sensing properties of Rare Earth (TB, Dy and Er) doped ZnO sensor. J. Phys. Chem. Solids 105, 23–34 (2017). https://doi.org/10.1016/j.jpcs.2017.02.004

    Article  ADS  Google Scholar 

  37. E. Sener, O. Bayram, U.C. Hasar, O. Simsek, Structural and optical properties of RF sputtered ZnO thin films: annealing effect. Phys. B 605, 412421 (2021). https://doi.org/10.1016/j.physb.2020.412421

    Article  Google Scholar 

  38. K.K. Kadyrzhanov, D.I. Shlimas, A.L. Kozlovskiy, M.V. Zdorovets, Research of the shielding effect and radiation resistance of composite CuBi2O4 films as well as their practical applications. J. Mater. Sci. Mater. Electron. 31, 11729–11740 (2020). https://doi.org/10.1007/s10854-020-03724-w

    Article  Google Scholar 

  39. A.L. Kozlovskiy, M.V. Zdorovets, Synthesis, structural, strength and corrosion properties of thin films of the type CuX (x = Bi, Mg, Ni). J. Mater. Sci. Mater. Electron. 30, 11819–11832 (2019). https://doi.org/10.1007/s10854-019-01556-x

    Article  Google Scholar 

  40. A. Kotelnikova, T. Zubar, T. Vershinina, M. Panasyuk, O. Kanafyev, V. Fedkin et al., The influence of saccharin adsorption on nife alloy film growth mechanisms during electrodeposition. RSC Adv. 12, 35722–35729 (2022). https://doi.org/10.1039/d2ra07118e

    Article  ADS  Google Scholar 

  41. R.I. Shakirzyanov, A.L. Kozlovskiy, M.V. Zdorovets, A.L. Zheludkevich, D.I. Shlimas, N.V. Abmiotka et al., Impact of thermobaric conditions on phase content, magnetic and electrical properties of the COFe2O4 ceramics. J. Alloy. Compd. 954, 170083 (2023). https://doi.org/10.1016/j.jallcom.2023.170083

    Article  Google Scholar 

  42. K. Radhi Devi, G. Selvan, M. Karunakaran, I.L. Poul Raj, V. Ganesh, S. AlFaify, Enhanced room temperature ammonia gas sensing properties of strontium doped ZnO thin films by cost-effective SILAR method. Mater. Sci. Semicond. Process.Semicond. Process. 119, 105117 (2020). https://doi.org/10.1016/j.mssp.2020.105117

    Article  Google Scholar 

  43. V.K. Jayaraman, R.R. Biswal, A.G. Hernandez, A. Maldonado, H. Gomez-Pozos, Synthesis and characterization of chemically sprayed ZnO:Fe: Ni thin films: effect of codo** concentration and response as Gas Sensor. J. Mater. Sci. Mater. Electron. 31, 7423–7433 (2020). https://doi.org/10.1007/s10854-020-02938-2

    Article  Google Scholar 

  44. D. Mahesh, M.C.S. Kumar, Synergetic effects of aluminium and indium dopants in the physical properties of ZnO thin films via spray pyrolysis. Superlattices Microstruct.Microstruct. 142, 106511 (2020). https://doi.org/10.1016/j.spmi.2020.106511

    Article  Google Scholar 

  45. A. Singh, S. Sikarwar, A. Verma, B. Chandra Yadav, The recent development of metal oxide heterostructures based gas sensor, their future opportunities and challenges: a review. Sens. Actuators A Phys. 332, 113127 (2021). https://doi.org/10.1016/j.sna.2021.113127

    Article  Google Scholar 

  46. T. Srinivasulu, K. Saritha, K.T.R. Reddy, Synthesis and characterization of Fe-doped ZnO thin films deposited by chemical spray pyrolysis. Modern Electronic Mater. 3, 76–85 (2017). https://doi.org/10.1016/j.moem.2017.07.001

    Article  Google Scholar 

  47. V.S. Bhati, S. Ranwa, M. Fanetti, M. Valant, M. Kumar, Efficient hydrogen sensor based on ni-doped ZnO nanostructures by RF sputtering. Sens. Actuators B Chem. 255, 588–597 (2018). https://doi.org/10.1016/j.snb.2017.08.106

    Article  Google Scholar 

  48. V.S. Kamble, Y.H. Navale, V.B. Patil, N.K. Desai, S.T. Salunkhe, Enhanced no2 gas sensing performance of Ni-doped ZnO nanostructures. J. Mater. Sci. Mater. Electron. 32, 2219–2233 (2021). https://doi.org/10.1007/s10854-020-04987-z

    Article  Google Scholar 

  49. P. Norouzzadeh, Kh. Mabhouti, M.M. Golzan, R. Naderali, Consequence of Mn and Ni do** on structural, optical and magnetic characteristics of ZnO nanopowders: the williamson–hall method, the Kramers-Kronig approach and magnetic interactions. Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-3335-9

    Article  Google Scholar 

  50. H.S. Rasheed, H.I. Abdulgafour, F.M. Hassan, A.A. Najim, Synthesis, characterization, and gas-sensing performance of macroporous Zn-doped NiO thin films for ammonia gas detection. J. Mater. Sci. Mater. Electron. 33, 18187–18198 (2022). https://doi.org/10.1007/s10854-022-08675-y

    Article  Google Scholar 

  51. M. Ashokkumar, S. Muthukumaran, Effect of Ni do** on electrical, photoluminescence and magnetic behavior of Cu doped ZnO nanoparticles. J. Lumin. 162, 97–103 (2015). https://doi.org/10.1016/j.jlumin.2015.02.019

    Article  Google Scholar 

  52. A. Kozlovskiy, K. Egizbek, M.V. Zdorovets, M. Ibragimova, A. Shumskaya, A.A. Rogachev et al., Evaluation of the efficiency of detection and capture of manganese in aqueous solutions of feceox nanocomposites doped with Nb2O5. Sensors. 20, 4851 (2020). https://doi.org/10.3390/s20174851

    Article  ADS  Google Scholar 

  53. M. Sathya, K. Pushpanathan, Synthesis and optical properties of Pb doped ZnO nanoparticles. Appl. Surf. Sci. 449, 346–357 (2018). https://doi.org/10.1016/j.apsusc.2017.11.127

    Article  ADS  Google Scholar 

  54. S.V. Trukhanov, V.A. Khomchenko, L.S. Lobanovski, M.V. Bushinsky, D.V. Karpinsky, V.V. Fedotova et al., Crystal structure and magnetic properties of ba-ordered Manganites Ln0.70Ba0.30MnO3−δ (Ln = Pr, Nd). J. Exp. Theor. Phys. 103, 398–410 (2006). https://doi.org/10.1134/s1063776106090093

    Article  ADS  Google Scholar 

  55. S. Chattopadhyay, K.P. Misra, A. Agarwala, A. Shahee, S. Jain, N. Halder et al., Dislocations and particle size governed band gap and ferromagnetic ordering in Ni doped ZnO nanoparticles synthesized via co-precipitation. Ceram. Int. 45, 23341–23354 (2019). https://doi.org/10.1016/j.ceramint.2019.08.034

    Article  Google Scholar 

  56. Z. Lu, L. Long, Z. Zhong, C. Lan, Structural characterization and optoelectrical properties of Ti–Ga co-doped ZnO thin films prepared by magnetron sputtering. J. Mater. Sci. Mater. Electron. 27, 2875–2884 (2015). https://doi.org/10.1007/s10854-015-4104-y

    Article  Google Scholar 

  57. A.K. Ambedkar, M. Singh, V. Kumar, V. Kumar, B.P. Singh, A. Kumar et al., Structural, optical and thermoelectric properties of al-doped ZnO thin films prepared by spray pyrolysis. Surf. Interfaces. 19, 100504 (2020). https://doi.org/10.1016/j.surfin.2020.100504

    Article  Google Scholar 

  58. M.N. Huda Liton, A.K. Mohammad Farid Ul Islam, M. Kamruzzaman, M.K. Rahman Khan, M. AlHelal, M.M. Rahman, Dual acceptor (N, Cu) do** effects on the electronic and optical properties of ZnO. Mater. Chem. Phys. 242, 122463 (2020). https://doi.org/10.1016/j.matchemphys.2019.122463

    Article  Google Scholar 

  59. A. Tumbul, F. Aslan, S. Demirozu, A. Goktas, A. Kilic, M. Durgun et al., Solution processed boron doped ZnO thin films: Influence of different boron complexes. Mater. Res. Express. 6, 035903 (2018). https://doi.org/10.1088/2053-1591/aaf4d8

    Article  ADS  Google Scholar 

  60. F. Abbasi, F. Zahedi, M. Hasan Yousefi, Fabricating and investigating high photoresponse UV photodetector based on Ni-doped ZnO nanostructures. Optics Commun. 482, 126565 (2021). https://doi.org/10.1016/j.optcom.2020.126565

    Article  Google Scholar 

  61. Q. Gao, Y. Dai, B. Han, W. Zhu, X. Li, C. Li, Enhanced gas-sensitivity and ferromagnetism performances by the Ni-do** induced oxygen vacancies in (Mn, Ni) codoped ZnO nanorods. Appl. Surf. Sci. 490, 178–187 (2019). https://doi.org/10.1016/j.apsusc.2019.06.014

    Article  ADS  Google Scholar 

  62. M.S. Nadeem, T. Munawar, F. Mukhtar, M. Naveed Ur Rahman, M. Riaz, A. Hussain et al., Hydrothermally derived Co, Ni co-doped ZnO nanorods; structural, optical, and morphological study. Optical Mater. 111, 110606–110607 (2021). https://doi.org/10.1016/j.optmat.2020.110606

    Article  Google Scholar 

  63. Z. Sima, P. Song, Y. Ding, Z. Lu, Q. Wang, ZnSnO3 nanocubes/Ti3C2Tx Mxene composites for enhanced formaldehyde gas sensing properties at room temperature. Appl. Surf. Sci. 598, 153861 (2022). https://doi.org/10.1016/j.apsusc.2022.153861

    Article  Google Scholar 

  64. X. Bai, H. Lv, Z. Liu, J. Chen, J. Wang, B. Sun et al., Thin-layered MOS2 nanoflakes vertically grown on SnO2 nanotubes as highly effective room-temperature NO2 gas sensor. J. Hazard. Mater. 416, 125830 (2021). https://doi.org/10.1016/j.jhazmat.2021.125830

    Article  Google Scholar 

  65. S. Kanaparthi, S.G. Singh, Chemiresistive sensor based on zinc oxide nanoflakes for CO2 detection. ACS Appl. Nano Mater. 2, 700–706 (2019). https://doi.org/10.1021/acsanm.8b01763

    Article  Google Scholar 

  66. S. Kanaparthi, S. Govind Singh, Highly sensitive and ultra-fast responsive ammonia gas sensor based on 2d ZnO nanoflakes. Mater. Sci. Energy Technol. 3, 91–96 (2020). https://doi.org/10.1016/j.mset.2019.10.010

    Article  Google Scholar 

  67. A. Hastir, N. Kohli, R.C. Singh, Temperature dependent selective and sensitive terbium doped ZnO nanostructures. Sens. Actuators, B Chem. 231, 110–119 (2016). https://doi.org/10.1016/j.snb.2016.03.001

    Article  Google Scholar 

  68. O. Alev, İ Ergün, O. Özdemir, L.Ç. Arslan, S. Büyükköse, Z.Z. Öztürk, Enhanced ethanol sensing performance of Cu-doped ZnO nanorods. Mater. Sci. Semicond. Process.Semicond. Process. 136, 106149 (2021). https://doi.org/10.1016/j.mssp.2021.106149

    Article  Google Scholar 

  69. S. Choudhary, A. Agarwal, A. Hazra, S. Gangopadhyay, CO gas-sensing at low temperature using CUO thin films, 2019 IEEE 16th India Council International Conference (INDICON). (2019). doi:https://doi.org/10.1109/indicon47234.2019.9030294.

  70. Y. Yang, S. Wu, Y. Cao, S. Li, T. **e, Y. Lin et al., A highly efficient room-temperature formaldehyde gas sensor based on a ni-doped ZnO hierarchical porous structure decorated with NIS illuminated by UV light. J. Alloy. Compd. 920, 165850 (2022). https://doi.org/10.1016/j.jallcom.2022.165850

    Article  Google Scholar 

  71. N.M. Vuong, T.T. Hien, V.T. Han, H.N. Hieu, N. Van Nghia, Efficient performance acetone sensor based on squirrel-tail like Ni doped ZnO hierarchical nanostructure. Mater Charact 180, 111388 (2021). https://doi.org/10.1016/j.matchar.2021.111388

    Article  Google Scholar 

  72. C. Wang, Y. Li, F. Gong, Y. Zhang, S. Fang, H. Zhang, Advances in doped ZnO nanostructures for gas sensor. Chem. Rec. 20, 1553–1567 (2020). https://doi.org/10.1002/tcr.202000088

    Article  Google Scholar 

  73. M. Ge, T. Xuan, G. Yin, J. Lu, D. He, Controllable synthesis of hierarchical assembled porous ZnO microspheres for Acetone Gas Sensor. Sens. Actuators B Chem. 220, 356–361 (2015). https://doi.org/10.1016/j.snb.2015.05.054

    Article  Google Scholar 

  74. C. Peng, J. Guo, W. Yang, C. Shi, M. Liu, Y. Zheng et al., Synthesis of three-dimensional flower-like hierarchical ZnO nanostructure and its enhanced acetone gas sensing properties. J. Alloy. Compd. 654, 371–378 (2016). https://doi.org/10.1016/j.jallcom.2015.09.120

    Article  Google Scholar 

  75. Y.-J. Jeong, C. Balamurugan, D.-W. Lee, Enhanced CO2 gas-sensing performance of ZnO nanopowder by La loaded during simple hydrothermal method. Sens. Actuators B Chem. 229, 288–296 (2016). https://doi.org/10.1016/j.snb.2015.11.093

    Article  Google Scholar 

  76. Y.-H. Zhang, C.-N. Wang, F.-L. Gong, P. Wang, U. Guharoy, C. Yang et al., Ultrathin Agaric-like ZnO with PD Dopant for aniline Sensor and DFT investigation. J. Hazard. Mater. 388, 122069 (2020). https://doi.org/10.1016/j.jhazmat.2020.122069

    Article  Google Scholar 

  77. X. Zhang, Z. Dong, S. Liu, Y. Shi, Y. Dong, W. Feng, Maize straw-templated hierarchical porous ZnO: Ni with enhanced acetone gas sensing properties. Sens. Actuators B Chem. 243, 1224–1230 (2017). https://doi.org/10.1016/j.snb.2016.12.076

    Article  Google Scholar 

  78. M. Navaneethan, V.L. Patil, S. Ponnusamy, C. Muthamizhchelvan, S. Kawasaki, P.S. Patil, Y. Hayakawa, Sensitivity enhancement of ammonia gas sensor based on Ag/ZnO flower and nanoellipsoids at low temperature. Sens. Actuators B Chem. 255, 672–683 (2018). https://doi.org/10.1016/j.snb.2017.08.015

    Article  Google Scholar 

  79. R. Dhahri, S.G. Leonardi, M. Hjiri, L.E. Mir, A. Bonavita, N. Donato, Enhanced performance of novel calcium/aluminum co-doped zinc oxide for CO2 sensors. Sens. Actuators B Chem. 239, 36–44 (2017). https://doi.org/10.1016/j.snb.2016.07.155

    Article  Google Scholar 

Download references

Acknowledgements

This research did not receive any specific grant from funding agencies in the public, commercial, or not for profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

SDL—synthesis, formal analysis, MBA—characterization, detail analysis, editing GU—conceptualization, VDM—supervision of scientific problems, final drafting, and reviewing.

Corresponding author

Correspondence to V. D. Mote.

Ethics declarations

Conflict of interest

The authors have no competing interests to declare that are relevant to the content of this article. The authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lokhande, S.D., Awale, M.B., Umadevi, G. et al. A study on room temperature acetone sensing ability of Zn1–xNixO thin films and probing their properties for progressive sensor technology. Appl. Phys. A 129, 769 (2023). https://doi.org/10.1007/s00339-023-07031-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-023-07031-z

Keywords

Navigation