Log in

Influence of graphene oxide surface treatment by diazonium salts on thermoelectrical behavior of polypyrrole-based composites

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this study, we investigate the influence of crude and surface-treated graphite by diazonium salt on the thermoelectric (TE) properties of six different mixtures of polypyrrole (PPy)-based ternary composites, which also contain poly(3,4-ethylenedioxythiophene) (PEDOT) or PEDOT:PSS and are prepared either by direct mixing procedure or copolymerization route according to an optimized formulation (Polymer I-Charges-Polymer II). The surface treatment, by 4-carboxybenzenediazonium tetrafluoroborate (DS-COOH), of reduced graphene oxide (FrGO) has been found to significantly improve TE properties of composites, wherein the higher obtained value of figure of merit (zT) has been greatened by a magnitude of 240 times comparatively to PPy alone. Moreover, composites obtained by the direct mixing process of component has exhibited more than twice the value of zT than that of composites obtained by the copolymerization method. Hence, surface treatment of FrGO by diazonium salt refines its seeked role in improving TE properties of polymeric composites and makes it a promising element when incorporated within organic composites to reach higher TE features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Data availability

The datasets generated during and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. H. Xu, C. Zhao, M. Zhai, CHAPTER 3:Synthesis of Organic Thermoelectric Materials. in Org. Thermoelectr. Mater., 2019, pp. 65–116. https://doi.org/10.1039/9781788016230-00065.

  2. C.-J. Yao, H.-L. Zhang, Q. Zhang, Recent progress in thermoelectric materials based on conjugated polymers. Polymers 11, 107 (2019). https://doi.org/10.3390/polym11010107

    Article  CAS  Google Scholar 

  3. B. Dörling, J.D. Ryan, J.D. Craddock, A. Sorrentino, A.E. Basaty, A. Gomez, M. Garriga, E. Pereiro, J.E. Anthony, M.C. Weisenberger, A.R. Goñi, C. Müller, M. Campoy-Quiles, Photoinduced p- to n-type switching in thermoelectric polymer-carbon nanotube composites. Adv. Mater. 28, 2782–2789 (2016). https://doi.org/10.1002/adma.201505521

    Article  CAS  Google Scholar 

  4. C. Li, F. Jiang, C. Liu, P. Liu, J. Xu, Present and future thermoelectric materials toward wearable energy harvesting. Appl. Mater. Today 15, 543–557 (2019). https://doi.org/10.1016/j.apmt.2019.04.007

    Article  Google Scholar 

  5. J.R. Szczech, J.M. Higgins, S. **, Enhancement of the thermoelectric properties in nanoscale and nanostructured materials. J. Mater. Chem. 21, 4037–4055 (2011). https://doi.org/10.1039/C0JM02755C

    Article  CAS  Google Scholar 

  6. W. Steurer, Crystal structures of metallic elements and compounds, in Phys. Metall, 5th edn., ed. by D.E. Laughlin, K. Hono (Elsevier, Oxford, 2014), pp. 1–101. https://doi.org/10.1016/B978-0-444-53770-6.00001-0

    Chapter  Google Scholar 

  7. Y. Zhang, Y.-J. Heo, M. Park, S.-J. Park, Recent advances in organic thermoelectric materials: principle mechanisms and emerging carbon-based green energy materials. Polymers 11, 167 (2019). https://doi.org/10.3390/polym11010167

    Article  CAS  Google Scholar 

  8. J. Wu, Y. Sun, W. Xu, Q. Zhang, Investigating thermoelectric properties of doped polyaniline nanowires. Synth. Met. 189, 177–182 (2014). https://doi.org/10.1016/j.synthmet.2014.01.007

    Article  CAS  Google Scholar 

  9. Z. Fan, J. Ouyang, CHAPTER 4:PEDOT-based Thermoelectrics. in Org. Thermoelectr. Mater., 2019: pp. 117–132. https://doi.org/10.1039/9781788016230-00117.

  10. Y. Wang, Q. Yin, K. Du, S. Mo, Q. Yin, Thermoelectric properties of polypyrrole nanotubes. Macromol. Res. 28, 973–978 (2020). https://doi.org/10.1007/s13233-020-8105-1

    Article  CAS  Google Scholar 

  11. P. Chakraborty, T. Ma, A.H. Zahiri, L. Cao, Y. Wang, Carbon-based materials for thermoelectrics. Adv. Condens. Matter Phys. 2018, e3898479 (2018). https://doi.org/10.1155/2018/3898479

    Article  CAS  Google Scholar 

  12. L.-X. Wang, X.-G. Li, Y.-L. Yang, Preparation, properties and applications of polypyrroles. React. Funct. Polym. 47, 125–139 (2001). https://doi.org/10.1016/S1381-5148(00)00079-1

    Article  CAS  Google Scholar 

  13. T. Skotheim, O. Inganäs, J. Prejza, I. Lundström, Polypyrrole—semiconductor photovoltaic devices. Mol. Cryst. Liq. Cryst. 83, 329–339 (1982). https://doi.org/10.1080/00268948208072183

    Article  Google Scholar 

  14. D. Guettiche, A. Mekki, B. Lilia, T. Fatma-zohra, A. Boudjellal, Flexible chemiresistive nitrogen oxides sensors based on a nanocomposite of polypyrrole- reduced graphene oxide grafted carboxybenzene diazonium salts. J. Mater. Sci. 32, 10662–10677 (2021). https://doi.org/10.21203/rs.3.rs-218668/v1

    Article  CAS  Google Scholar 

  15. Z. Bekkar Djelloul Sayah, A. Mekki, F. Delaleux, O. Riou, J.-F. Durastanti, Response surface methodology as a powerful tool for the synthesis of polypyrrole-doped organic sulfonic acid and the optimization of its thermoelectric properties. J. Electron. Mater. 48, 3662–3675 (2019). https://doi.org/10.1007/s11664-019-07124-7

    Article  CAS  Google Scholar 

  16. D. Yoo, J. Kim, J.H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res. 7, 717–730 (2014). https://doi.org/10.1007/s12274-014-0433-z

    Article  CAS  Google Scholar 

  17. Y. Wang, J. Yang, L. Wang, K. Du, Q. Yin, Q. Yin, Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl. Mater. Interfaces 9, 20124–20131 (2017). https://doi.org/10.1021/acsami.7b05357

    Article  CAS  Google Scholar 

  18. S. Wang, Y. Zhou, Y. Liu, L. Wang, C. Gao, Enhanced thermoelectric properties of polyaniline/polypyrrole/carbon nanotube ternary composites by treatment with a secondary dopant using ferric chloride. J. Mater. Chem. C 8, 528–535 (2020). https://doi.org/10.1039/C9TC06300E

    Article  Google Scholar 

  19. K. Zhang, Y. Zhang, S. Wang, Enhancing thermoelectric properties of organic composites through hierarchical nanostructures. Sci. Rep. 3, 3448 (2013). https://doi.org/10.1038/srep03448

    Article  Google Scholar 

  20. N.I. Zaaba, K.L. Foo, U. Hashim, S.J. Tan, W.-W. Liu, C.H. Voon, Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng. 184, 469–477 (2017). https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  21. W.S. Hummers, R.E. Offeman, Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339–1339 (1958). https://doi.org/10.1021/ja01539a017

    Article  CAS  Google Scholar 

  22. J.Y. Kim, J.C. Grossman, High-efficiency thermoelectrics with functionalized graphene. Nano Lett. 15, 2830–2835 (2015). https://doi.org/10.1021/nl504257q

    Article  CAS  Google Scholar 

  23. H. Zhu, P. Huang, L. **g, T. Zuo, Y. Zhao, X. Gao, Microstructure evolution of diazonium functionalized graphene: a potential approach to change graphene electronic structure. J. Mater. Chem. 22, 2063–2068 (2012). https://doi.org/10.1039/C1JM14862A

    Article  CAS  Google Scholar 

  24. D. Cai, M. Song, Recent advance in functionalized graphene/polymer nanocomposites. J. Mater. Chem. 20, 7906–7915 (2010). https://doi.org/10.1039/C0JM00530D

    Article  CAS  Google Scholar 

  25. G. Chen, W. Xu, D. Zhu, Recent advances in organic polymer thermoelectric composites. J. Mater. Chem. C 5, 4350–4360 (2017). https://doi.org/10.1039/C6TC05488A

    Article  CAS  Google Scholar 

  26. Z. Fan, J. Ouyang, Thermoelectric properties of PEDOT:PSS. Adv. Electron. Mater. 5, 1800769 (2019). https://doi.org/10.1002/aelm.201800769

    Article  CAS  Google Scholar 

  27. L. Liang, J. Fan, M. Wang, G. Chen, G. Sun, Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template. Compos. Sci. Technol. 187, 107948 (2020). https://doi.org/10.1016/j.compscitech.2019.107948

    Article  CAS  Google Scholar 

  28. B. S, T. I, B.-L. L, I. I, S. Ac, G. E, B. N, F. N, R. E, L. de la C. M, Raman Characterization of Phenyl-Derivatives: From Primary Amine to Diazonium Salts, J. Org. Inorg. Chem. 3 (2017). https://doi.org/10.21767/2472-1123.100021.

  29. D. Shahdeo, A. Roberts, N. Abbineni, S. Gandhi, Chapter eight—graphene based sensors, in Compr. Anal. Chem. ed. by C.M. Hussain (Elsevier, Amsterdam, 2020), pp. 175–199. https://doi.org/10.1016/bs.coac.2020.08.007

    Chapter  Google Scholar 

  30. S. Stankovich, D.A. Dikin, R.D. Piner, K.A. Kohlhaas, A. Kleinhammes, Y. Jia, Y. Wu, S.T. Nguyen, R.S. Ruoff, Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45, 1558–1565 (2007). https://doi.org/10.1016/j.carbon.2007.02.034

    Article  CAS  Google Scholar 

  31. J.R. Lomeda, C.D. Doyle, D.V. Kosynkin, W.-F. Hwang, J.M. Tour, Diazonium functionalization of surfactant-wrapped chemically converted graphene sheets. J. Am. Chem. Soc. 130, 16201–16206 (2008). https://doi.org/10.1021/ja806499w

    Article  CAS  Google Scholar 

  32. R. Corradi, S.P. Armes, Chemical synthesis of poly(3,4-ethylenedioxythiophene). Synth. Met. 84, 453–454 (1997). https://doi.org/10.1016/S0379-6779(97)80828-4

    Article  CAS  Google Scholar 

  33. S. Munusamy, R. Suresh, K. Giribabu, R. Manigandan, S. PraveenKumar, S. Muthamizh, C. Bagavath, A. Stephen, J. Kumar, V. Narayanan, Synthesis and characterization of GaN/PEDOT–PPY nanocomposites and its photocatalytic activity and electrochemical detection of mebendazole. Arab. J. Chem. 12, 3565–3575 (2019). https://doi.org/10.1016/j.arabjc.2015.10.012

    Article  CAS  Google Scholar 

  34. S. Bahraeian, K. Abron, F. Pourjafarian, R.A. Majid, Study on synthesis of polypyrrole via chemical polymerization method. Adv. Mater. Res. 795, 707–710 (2013). https://doi.org/10.4028/www.scientific.net/AMR.795.707

    Article  CAS  Google Scholar 

  35. H.J. Kharat, K.P. Kakde, P.A. Savale, K. Datta, P. Ghosh, M.D. Shirsat, Synthesis of polypyrrole films for the development of ammonia sensor. Polym. Adv. Technol. 18, 397–402 (2007). https://doi.org/10.1002/pat.903

    Article  CAS  Google Scholar 

  36. M. Omastová, M. Mravcaková, I. Chodák, J. Pionteck, L. Häussler, Conductive polypropylene/clay/polypyrrole nanocomposites. Polym. Eng. Sci. 46, 1069–1078 (2006). https://doi.org/10.1002/pen.20551

    Article  CAS  Google Scholar 

  37. Q. Zhao, R. Jamal, L. Zhang, M. Wang, T. Abdiryim, The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res. Lett. 9, 557 (2014). https://doi.org/10.1186/1556-276X-9-557

    Article  CAS  Google Scholar 

  38. F. Abd-Wahab, H.F. AbdulGuthoos, W.W.A. WanSalim, Solid-state rGO-PEDOT:PSS transducing material for cost-effective enzymatic sensing. Biosensors 9, 36 (2019). https://doi.org/10.3390/bios9010036

    Article  CAS  Google Scholar 

  39. A. Mekki, S. Samanta, A. Singh, Z. Salmi, R. Mahmoud, M.M. Chehimi, D.K. Aswal, Core/shell, protuberance-free multiwalled carbon nanotube/polyaniline nanocomposites via interfacial chemistry of aryl diazonium salts. J. Colloid Interface Sci. 418, 185–192 (2014). https://doi.org/10.1016/j.jcis.2013.11.077

    Article  CAS  Google Scholar 

  40. A. Bahrami, Z.A. Talib, W.M.M. Yunus, K. Behzad, M.M. Abdi, F.U. Din, Low temperature hall effect investigation of conducting polymer-carbon nanotubes composite network. Int. J. Mol. Sci. 13, 14917–14928 (2012). https://doi.org/10.3390/ijms131114917

    Article  CAS  Google Scholar 

  41. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5, 31039–31048 (2015). https://doi.org/10.1039/C5RA01794G

    Article  CAS  Google Scholar 

  42. Q. Yao, L. Chen, W. Zhang, S. Liufu, X. Chen, Enhanced thermoelectric performance of single-walled carbon nanotubes/polyaniline hybrid nanocomposites. ACS Nano 4, 2445–2451 (2010). https://doi.org/10.1021/nn1002562

    Article  CAS  Google Scholar 

  43. N.E. Coates, S.K. Yee, B. McCulloch, K.C. See, A. Majumdar, R.A. Segalman, J.J. Urban, Effect of interfacial properties on polymer-nanocrystal thermoelectric transport. Adv. Mater. 25, 1629–1633 (2013). https://doi.org/10.1002/adma.201203915

    Article  CAS  Google Scholar 

  44. W. Wang, Q. Zhang, J. Li, X. Liu, L. Wang, J. Zhu, W. Luo, W. Jiang, An efficient thermoelectric material: preparation of reduced graphene oxide/polyaniline hybrid composites by cryogenic grinding. RSC Adv. 5, 8988–8995 (2015). https://doi.org/10.1039/C4RA12051E

    Article  CAS  Google Scholar 

Download references

Acknowledgements

Younes Bourenane Cherif is very indebted to Ecole Militaire Polytechnique in Algeria and Université de Namur in Belgium for providing him Ph.D. partner scholarship.

Funding

No funding was received for conducting this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: YBC and NM; Methodology: ZBDS and AM; Formal analysis and investigation: J-FD and ZM; Writing—original draft preparation: YBC; Writing—review and editing: AM and ZM; Resources: ZBDS and J-FD; Supervision: AM and ZM.

Corresponding authors

Correspondence to Ahmed Mekki or Zineb Mekhalif.

Ethics declarations

Conflict of interest

None of the authors of this paper have a financial or personal relationship with other people or organizations that could inappropriately influence or bias the content of the paper. It is to state “No Competing interests are at stake and there is No Conflict of Interest” with other people or organizations that could inappropriately influence or bias the content of the paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bourenane Cherif, Y., Matmat, N., Bekkar Djelloul Sayah, Z. et al. Influence of graphene oxide surface treatment by diazonium salts on thermoelectrical behavior of polypyrrole-based composites. J Mater Sci: Mater Electron 33, 14938–14950 (2022). https://doi.org/10.1007/s10854-022-08410-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-022-08410-7

Navigation