Log in

On the diazonium surface treatment of graphene oxide: effect on thermoelectric behavior of polythiophene hybrid ternary composites

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

Nowadays, thermoelectric materials are the subject of huge number of research dealing with energy conversion optimization. Herein, we report the study of thermoelectric performance improvement of three different ternary hybrid composite-based polythiophene, poly(3,4-ethylene-dioxythiophene)/poly(4-styrenesulfonate) and both of graphene oxide, reduced graphene oxide and aryl diazonium salt functionalized graphene oxide (FGO). Structural and morphological characterization of the as-prepared materials was carried out by using FTIR, Raman spectroscopy and SEM. Thermoelectric characteristics were determined through the measurement of figure of merit ZT and the electrical conductivity as well as the Seebeck coefficient at room temperature of 298.15 K. Hybrid composite based on functionalized graphene oxide (PTh-FGO-PEDOT:PSS) has shown the most significant improvement over polythiophene alone, marking an enhancement of 71 times in terms of electrical conductivity and 3 times in terms of Seebeck coefficient, resulting in very large ZT coefficient value within magnitude of 2.3 × 105, which highlights the great apport of using aryl diazonium salts in surface modification of graphene oxide.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig.9

Similar content being viewed by others

References

  1. Che Lah NA (2021) Late transition metal nanocomplexes: applications for renewable energy conversion and storage. Renew Sustain Energy Rev 145:111103. https://doi.org/10.1016/j.rser.2021.111103

    Article  CAS  Google Scholar 

  2. Tong C (2019) Emerging materials for energy harvesting. In: Tong C (ed) Introduction to materials for advanced energy systems. Springer, Cham, pp 719–817

    Chapter  Google Scholar 

  3. Prunet G, Pawula F, Fleury G et al (2021) A review on conductive polymers and their hybrids for flexible and wearable thermoelectric applications. Mater Today Phys 18:100402. https://doi.org/10.1016/j.mtphys.2021.100402

    Article  CAS  Google Scholar 

  4. McGrail BT, Sehirlioglu A, Pentzer E (2015) Polymer composites for thermoelectric applications. Angew Chem Int Ed 54:1710–1723. https://doi.org/10.1002/anie.201408431

    Article  CAS  Google Scholar 

  5. Vostrikov S, Somov A, Gotovtsev P, Magno M (2021) Comprehensive modelling framework for a low temperature gradient thermoelectric generator. Energy Convers Manag 247:114721. https://doi.org/10.1016/j.enconman.2021.114721

    Article  Google Scholar 

  6. Zhang Q, Sun Y, Xu W, Zhu D (2014) Organic thermoelectric materials: emerging green energy materials converting heat to electricity directly and efficiently. Adv Mater 26:6829–6851. https://doi.org/10.1002/adma.201305371

    Article  CAS  PubMed  Google Scholar 

  7. Han S, Chen S, Jiao F (2021) Insulating polymers for flexible thermoelectric composites: a multi-perspective review. Compos Commun 28:100914. https://doi.org/10.1016/j.coco.2021.100914

    Article  Google Scholar 

  8. Wei J, Yang L, Ma Z et al (2020) Review of current high-ZT thermoelectric materials. J Mater Sci 55:12642–12704. https://doi.org/10.1007/s10853-020-04949-0

    Article  CAS  Google Scholar 

  9. Peng S, Wang D, Lu J et al (2017) A review on organic polymer-based thermoelectric materials. J Polym Environ 25:1208–1218. https://doi.org/10.1007/s10924-016-0895-z

    Article  CAS  Google Scholar 

  10. Keshavarz Khorasgani M (2014) Synthesis and characterization of bismuth telluride-based nanostructured thermoelectric composite materials. Phd, École Polytechnique de Montréal

  11. Bhat IH, Bhat TM, Gupta DC (2018) Magneto-electronic and thermoelectric properties of some Fe-based Heusler alloys. J Phys Chem Solids 119:251–257. https://doi.org/10.1016/j.jpcs.2018.04.008

    Article  CAS  Google Scholar 

  12. Benhalima Z, Sahnoun M (2020) Theoretical analysis of thermoelectric performance in p-type CoSb3 based skutterudite by simultaneous partially void filling and Sn substitution. J Phys Chem Solids 145:109545. https://doi.org/10.1016/j.jpcs.2020.109545

    Article  CAS  Google Scholar 

  13. Massonnet N, Carella A, Jaudouin O et al (2014) Improvement of the seebeck coefficient of PEDOT:PSS by chemical reduction combined with a novel method for its transfer using free-standing thin films. J Mater Chem C 2:1278–1283. https://doi.org/10.1039/C3TC31674B

    Article  CAS  Google Scholar 

  14. Chiang CK, Fincher CR, Park YW et al (1977) Electrical conductivity in doped polyacetylene. Phys Rev Lett 39:1098–1101. https://doi.org/10.1103/PhysRevLett.39.1098

    Article  CAS  Google Scholar 

  15. Nunzi J-M (2002) Organic photovoltaic materials and devices. Comptes Rendus Phys 3:523–542. https://doi.org/10.1016/S1631-0705(02)01335-X

    Article  CAS  Google Scholar 

  16. Du Y, Shen SZ, Cai K, Casey PS (2012) Research progress on polymer–inorganic thermoelectric nanocomposite materials. Prog Polym Sci 37:820–841. https://doi.org/10.1016/j.progpolymsci.2011.11.003

    Article  CAS  Google Scholar 

  17. Liang L, Fan J, Wang M et al (2020) Ternary thermoelectric composites of polypyrrole/PEDOT:PSS/carbon nanotube with unique layered structure prepared by one-dimensional polymer nanostructure as template. Compos Sci Technol 187:107948. https://doi.org/10.1016/j.compscitech.2019.107948

    Article  CAS  Google Scholar 

  18. Gordon MP, Haas K, Zaia E et al (2021) Understanding diameter and length effects in a solution-processable tellurium-poly(3,4-ethylenedioxythiophene) polystyrene sulfonate hybrid thermoelectric nanowire mesh. Adv Electron Mater 7:2000904. https://doi.org/10.1002/aelm.202000904

    Article  CAS  Google Scholar 

  19. Karalis G, Tzounis L, Mytafides CK et al (2021) A high performance flexible and robust printed thermoelectric generator based on hybridized Te nanowires with PEDOT:PSS. Appl Energy 294:117004. https://doi.org/10.1016/j.apenergy.2021.117004

    Article  CAS  Google Scholar 

  20. Bao-Yang L, Cong-Cong L, Shan L et al (2010) Thermoelectric performances of free-standing polythiophene and poly(3-methylthiophene) nanofilms. Chin Phys Lett 27:057201. https://doi.org/10.1088/0256-307X/27/5/057201

    Article  CAS  Google Scholar 

  21. Shi (2015) Effective approaches to improve the electrical conductivity of PEDOT:PSS: a review advanced electronic Materials. Wiley online library. https://onlinelibrary.wiley.com/doi/abs/https://doi.org/10.1002/aelm.201500017. Accessed 12 Oct 2021

  22. Fan Z, Ouyang J (2019) Thermoelectric properties of PEDOT:PSS. Adv Electron Mater 5:1800769. https://doi.org/10.1002/aelm.201800769

    Article  CAS  Google Scholar 

  23. Nandihalli N, Liu C-J, Mori T (2020) Polymer based thermoelectric nanocomposite materials and devices: Fabrication and characteristics. Nano Energy 78:105186. https://doi.org/10.1016/j.nanoen.2020.105186

    Article  CAS  Google Scholar 

  24. Russ B, Glaudell A, Urban JJ et al (2016) Organic thermoelectric materials for energy harvesting and temperature control. Nat Rev Mater 1:1–14. https://doi.org/10.1038/natrevmats.2016.50

    Article  CAS  Google Scholar 

  25. Yang J, Jia Y, Liu Y et al (2021) PEDOT:PSS/PVA/Te ternary composite fibers toward flexible thermoelectric generator. Compos Commun 27:100855. https://doi.org/10.1016/j.coco.2021.100855

    Article  Google Scholar 

  26. Fan Y, Liu Z, Chen G (2021) Constructing flexible metal-organic framework/polymer/carbon nanotubes ternary composite films with enhanced thermoelectric properties for heat-to-electricity conversion. Compos Commun. https://doi.org/10.1016/j.coco.2021.100997

    Article  Google Scholar 

  27. Gao C, Chen G (2016) Conducting polymer/carbon particle thermoelectric composites: emerging green energy materials. Compos Sci Technol 124:52–70. https://doi.org/10.1016/j.compscitech.2016.01.014

    Article  CAS  Google Scholar 

  28. Chen D, Zhao Y, Chen Y et al (2015) One-Step chemical synthesis of zno/graphene oxide molecular hybrids for high-temperature thermoelectric applications. ACS Appl Mater Interfaces 7:3224–3230. https://doi.org/10.1021/am507882f

    Article  CAS  PubMed  Google Scholar 

  29. Tien HN, Hur SH (2012) One-step synthesis of a highly conductive graphene–polypyrrole nanofiber composite using a redox reaction and its use in gas sensors. Phys Status Solidi RRL Rapid Res Lett 6:379–381. https://doi.org/10.1002/pssr.201206333

    Article  CAS  Google Scholar 

  30. Yang Y, Li S, Yang W et al (2014) In situ polymerization deposition of porous conducting polymer on reduced graphene oxide for gas sensor. ACS Appl Mater Interfaces 6:13807–13814. https://doi.org/10.1021/am5032456

    Article  CAS  PubMed  Google Scholar 

  31. Cao C, Zhang Y, Jiang C et al (2017) Advances on aryldiazonium salt chemistry based interfacial fabrication for sensing applications. ACS Appl Mater Interfaces 9:5031–5049. https://doi.org/10.1021/acsami.6b16108

    Article  CAS  PubMed  Google Scholar 

  32. Ngadiwiyana, Ismiyarto, Gunawan et al (2018) Sulfonated polystyrene and its characterization as a material of electrolyte polymer. J Phys Conf Ser 1025:012133. https://doi.org/10.1088/1742-6596/1025/1/012133

    Article  CAS  Google Scholar 

  33. Wang Y, Yang J, Wang L et al (2017) Polypyrrole/graphene/polyaniline ternary nanocomposite with high thermoelectric power factor. ACS Appl Mater Interfaces 9:20124–20131. https://doi.org/10.1021/acsami.7b05357

    Article  CAS  PubMed  Google Scholar 

  34. Zaaba NI, Foo KL, Hashim U et al (2017) Synthesis of graphene oxide using modified hummers method: solvent influence. Procedia Eng 184:469–477. https://doi.org/10.1016/j.proeng.2017.04.118

    Article  CAS  Google Scholar 

  35. Kažemėkaitė M, Talaikytė Z, Niaura G, Butkus E (2002) Diazoamino coupling of a 4-sulfobenzenediazonium salt with some cyclic amines. Molecules 7:706–711. https://doi.org/10.3390/70900706

    Article  PubMed Central  Google Scholar 

  36. Zou B, Guo Y, Shen N et al (2017) Sulfophenyl-functionalized reduced graphene oxide networks on electrospun 3d scaffold for ultrasensitive no2 gas sensor. Sensors 17:2954. https://doi.org/10.3390/s17122954

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Betelu S, Tijunelyte I, Boubekeur-Lecaque L et al (2016) Evidence of the grafting mechanisms of diazonium salts on gold nanostructures. J Phys Chem C 120:18158–18166. https://doi.org/10.1021/acs.jpcc.6b06486

    Article  CAS  Google Scholar 

  38. Larkin P (2018) Infrared and Raman spectroscopy: principles and spectral interpretation, 2nd edn. Elsevier, Amsterdam

    Google Scholar 

  39. Sakunpongpitiporn P, Phasuksom K, Paradee N, Sirivat A (2019) Facile synthesis of highly conductive PEDOT:PSS via surfactant templates. RSC Adv 9:6363–6378. https://doi.org/10.1039/C8RA08801B

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. García-Tecedor M, Karazhanov SZ, Vásquez GC et al (2018) Silicon surface passivation by PEDOT: PSS functionalized by SnO2 and TiO2 nanoparticles. Nanotechnology 29:035401. https://doi.org/10.1088/1361-6528/aa9c9e

    Article  CAS  PubMed  Google Scholar 

  41. Park H, Lee SH, Kim FS et al (2014) Enhanced thermoelectric properties of PEDOT:PSS nanofilms by a chemical dedo** process. J Mater Chem A 2:6532–6539. https://doi.org/10.1039/C3TA14960A

    Article  CAS  Google Scholar 

  42. Garreau S, Louarn G, Buisson JP et al (1999) In Situ Spectroelectrochemical Raman Studies of Poly(3,4-ethylenedioxythiophene) (PEDT). Macromolecules 32:6807–6812. https://doi.org/10.1021/ma9905674

    Article  CAS  Google Scholar 

  43. Lindfors T, Boeva ZA, Latonen R-M (2014) Electrochemical synthesis of poly(3,4-ethylenedioxythiophene) in aqueous dispersion of high porosity reduced graphene oxide. RSC Adv 4:25279–25286. https://doi.org/10.1039/C4RA03423F

    Article  CAS  Google Scholar 

  44. Yang D, Velamakanni A, Bozoklu G et al (2009) Chemical analysis of graphene oxide films after heat and chemical treatments by X-ray photoelectron and Micro-Raman spectroscopy. Carbon 47:145–152. https://doi.org/10.1016/j.carbon.2008.09.045

    Article  CAS  Google Scholar 

  45. Li H, Fan J, Shi Z et al (2015) Preparation and characterization of sulfonated graphene-enhanced poly (vinyl alcohol) composite hydrogel and its application as dye absorbent. Polymer 60:96–106. https://doi.org/10.1016/j.polymer.2014.12.069

    Article  CAS  Google Scholar 

  46. Ly CT, Phan CT, Vu CN et al (2019) Electrodeposition of PEDOT-rGO film in aqueous solution for detection of acetaminophen in traditional medicaments. Adv Nat Sci Nanosci Nanotechnol 10:015013. https://doi.org/10.1088/2043-6254/ab0883

    Article  CAS  Google Scholar 

  47. Seekaew Y, Lokavee S, Phokharatkul D et al (2014) Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org Electron 15:2971–2981. https://doi.org/10.1016/j.orgel.2014.08.044

    Article  CAS  Google Scholar 

  48. Zhao Q, Jamal R, Zhang L et al (2014) The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9:557. https://doi.org/10.1186/1556-276X-9-557

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  49. Abd-Wahab F, Abdul Guthoos H, Wan Salim W (2019) Solid-state rGO-PEDOT:PSS transducing material for cost-effective enzymatic sensing. Biosensors 9:36. https://doi.org/10.3390/bios9010036

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  50. Kim SH, Kim JH, Choi HJ, Park J (2015) Pickering emulsion polymerized poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate)/polystyrene composite particles and their electric stimuli-response. RSC Adv 5:72387–72393. https://doi.org/10.1039/C5RA10661C

    Article  CAS  Google Scholar 

  51. Li J, Du Y, Jia R et al (2017) thermoelectric properties of flexible pedot:pss/polypyrrole/paper nanocomposite films. Materials 10:780. https://doi.org/10.3390/ma10070780

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Li J, Du Y, Jia R et al (2017) Flexible thermoelectric composite films of polypyrrole nanotubes coated paper. Coatings 7:211. https://doi.org/10.3390/coatings7120211

    Article  CAS  Google Scholar 

  53. **ang M, Yang Z, Chen J et al (2020) Polymeric thermoelectric composites by polypyrrole and cheap reduced graphene oxide in towel-gourd sponge fibers. ACS Omega 5:29955–29962. https://doi.org/10.1021/acsomega.0c04356

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. khezri T, Sharif M, Pourabas B, (2016) Polythiophene–graphene oxide doped epoxy resin nanocomposites with enhanced electrical, mechanical and thermal properties. RSC Adv 6:93680–93693. https://doi.org/10.1039/C6RA16701B

    Article  Google Scholar 

  55. Wang S, Liu F, Gao C et al (2019) Enhancement of the thermoelectric property of nanostructured polyaniline/carbon nanotube composites by introducing pyrrole unit onto polyaniline backbone via a sustainable method. Chem Eng J 370:322–329. https://doi.org/10.1016/j.cej.2019.03.155

    Article  CAS  Google Scholar 

  56. **ang M, Li C, Ye L (2018) Reactive melt processing of polyamide 6/reduced graphene oxide nano-composites and its electrically conductive behavior. J Ind Eng Chem 62:84–95. https://doi.org/10.1016/j.jiec.2017.12.047

    Article  CAS  Google Scholar 

Download references

Acknowledgements

L. METREF is very indebted to Ecole Militaire Polytechnique, for the provision of PhD Scholarship Granted by the project number 01/2018/DRFPG/EMP. All the coauthors are very grateful to M. A. MANSERI, for his assistance with the SEM images.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ahmed Mekki.

Ethics declarations

Conflict of interest

Authors declare that they have no known competing financial interests or personal relationships that could have appeared to influence the work reported in this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Metref, L., Mekki, A., Bekkar Djeloul Sayah, Z. et al. On the diazonium surface treatment of graphene oxide: effect on thermoelectric behavior of polythiophene hybrid ternary composites. Polym. Bull. 80, 5785–5808 (2023). https://doi.org/10.1007/s00289-022-04333-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-022-04333-9

Keywords

Navigation