Log in

Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

We report changes in the properties of lithium-zinc-lead-borate glass (mol%: 5Li2O·10ZnO·60PbO·25B2O3) brought by substituting alkaline earth metal oxides for part of its Li2O content. These properties include density, optical basicity, molecular structure, conductivity, dielectric properties and chemical durability. The glasses were prepared by the melting quenching technique. The effect of substituting 2 mol% Li2O by equivalent moles of MgO, CaO, SrO or BaO on the above mentioned properties is reported. The results showed that an increase in the density and the optical basicity is noticed for samples with substituted oxides in the order MgO, CaO, SrO or BaO. The FTIR also revealed that the BO3 units with NBOs of the glasses increase with such substitution. The chemical durability was increased for glass with substituted MgO, while it decreased for those with substituted CaO, SrO or BaO. The conductivities of the base glass sample and that substituted with MgO are found to be mainly ionic while they are mainly electronic for those substituted with CaO, SrO or BaO. The dielectric permittivity revealed a value of 11.72 for the base un-substituted glass which increased to 394.02 at room temperature for glass substituted with BaO. The substituted samples with alkaline earth metal oxides produced glassy materials of high dielectric permittivity (ε′) that could present good candidate for energy storage in electronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. G.D. Khattak, N. Tabet, Phys. Rev. B 72, 104203 (2005)

    Article  Google Scholar 

  2. S. Murugavel, B. Roling, Phys. Rev. B 76, 180202 (2007)

    Article  Google Scholar 

  3. Ch. Rajasree, K. Rao, J. Non-Cryst. Solids 357, 836 (2011)

    Article  Google Scholar 

  4. S.L.S. Rao, G. Ramadevudu, Md Shareefuddin, A. Hameed, M.N. Chary, M.L. Rao, Int. J. Eng. Sci. Technol. 4, 25 (2012)

    Google Scholar 

  5. M. Ganguli, K.J. Rao, J. Solid State Chem. 145, 65 (1999)

    Article  Google Scholar 

  6. P.J. Bray, M. Leventhal, H.O. Hooper, Phys. Chem. Glasses 4, 47 (1963)

    Google Scholar 

  7. B.N. Meera, A.K. Sood, N. Chandrabhas, J. Non-Cryst. Solids 126, 224 (1990)

    Article  Google Scholar 

  8. Y.B. Saddeek, J. Alloys Compd. 467, 14 (2009)

    Article  Google Scholar 

  9. R.C. Lucacel, I. Ardelean, J. Non-Cryst. Solids 353, 2020 (2007)

    Article  Google Scholar 

  10. Y. Cheng, H. **ao, W. Guo, Ceram. Int. 33, 1341 (2007)

    Article  Google Scholar 

  11. T. Inoue, T. Honma, V. Dimitrov, T. Komatsu, J. Solid State Chem. 183, 3078 (2010)

    Article  Google Scholar 

  12. V. Dimitrov, S. Sakka, J. Appl. Phys. 79, 1736 (1996)

    Article  Google Scholar 

  13. V.F. Sears, Neutrons News 3, 26 (1992)

    Article  Google Scholar 

  14. H. Ushida, Y. Iwadate, T. Hattori, J. Alloys Compd. 377, 167 (2004)

    Article  Google Scholar 

  15. G.D. Chryssikos, E.I. Kamitsos, M.A. Karakassides, Phys. Chem. Glasses 31, 109 (1990)

    Google Scholar 

  16. R.C. Lucacel, C. Marcus, V. Timar, I. Ardelean, Solid State Sci. 9, 850 (2007)

    Article  Google Scholar 

  17. C. Erdogan, M. Bengisu, S.A. Erenturk, J. Nuclear Mater. 445, 154 (2014)

    Article  Google Scholar 

  18. S. Rada, P. Pascuta, M. Culea, V. Maties, M. Rada, M. Barlea, E. Culea, J. Mol. Struct. 924–926, 89 (2009)

    Article  Google Scholar 

  19. N.M. Bobkova, Glass Ceram. 66, 206 (2009)

    Article  Google Scholar 

  20. J. Coelho, C. Freire, N.S. Hussain, Spectrochim. Acta, Part A 86, 392 (2012)

    Article  Google Scholar 

  21. Y.B. Saddeek, L.A.E. Latif, Phys. B 348, 475–484 (2004)

    Article  Google Scholar 

  22. M.S. Reddy, G.N. Raju, G. Nagarjuna, N. Veeraiah, J. Alloys Compd. 438, 41 (2007)

    Article  Google Scholar 

  23. A. Thulasiramudu, S. Buddhudu, J. Quant. Spectrosc. Radiat. Transf. 97, 181 (2006)

    Article  Google Scholar 

  24. S. Stefanov, Glass Tech. 41, 193 (2000)

    Google Scholar 

  25. K. Aida, T. Komatsu, V. Dimitrov, Phys. Chem. Glasses 42, 103 (2001)

    Google Scholar 

  26. H.L. Tuller, P.K. Moon, Mater. Sci. Eng. B 1, 171 (1988)

    Article  Google Scholar 

  27. N.K. Sanjay, A. Agarwal, J. Alloys Compd. 487, 52 (2009)

    Article  Google Scholar 

  28. J.A. Duffy, M.D. Ingram, in Optical Properties of Glass, ed. by D. Uhlman, N. Kreidl, Am. Ceram. Soc. Westervill (1991)

  29. V. Dimitrov, T. Komatsu, J. Ceram. Soc. Jpn. 107, 1012 (1999)

    Article  Google Scholar 

  30. V. Dimitrov, T. Komatsu, J. Univ. Chem. Technol. Met. (Sofia) 45, 219 (2010)

    Google Scholar 

  31. S. Ibrahim, M.M. Morsi, Mater. Chem. Phys. 138, 628 (2013)

    Article  Google Scholar 

  32. I. Szabo, G. Volksch, W. Holland, J. Non-Cryst. Solids 272, 191 (2000)

    Article  Google Scholar 

  33. P.B. Adams, M.E. Mordberg, H.V. Wolters, Glass Technol. 5, 136 (1964)

    Google Scholar 

  34. R.M.M. Morsi, S. Ibrahim, M.M. Morsi, J. Mater. Sci.: Mater. Electron. 26, 1419 (2015)

    Google Scholar 

  35. B. Kumar, T. Vijaya, M. Sankarappa, S. Kumar, P.J.P. Kumar, R. Sadashivaiah, R. Reddy, Phys. B 404, 3487 (2006)

    Article  Google Scholar 

  36. J.C. Dyre, J. Non-Cryst. Solids 135, 219 (1991)

    Article  Google Scholar 

  37. H. El. Mkami, B. Deroide, R. Backov, J.V. Zanchetta, J. Phys. Chem. Solids 61, 819 (2000)

    Article  Google Scholar 

  38. E. Kamitsos, Y. Yiannopoulos, J. Duffy, J. Phys. Chem. B 106, 8988 (2002)

    Article  Google Scholar 

  39. S. Sanghi, S. Rani, A. Agarwal, V. Bhatnagar, Mater. Chem. Phys. 120, 381 (2010)

    Article  Google Scholar 

  40. J.A. Duffy, Phys. Chem. Glasses 30, 1 (1989)

    Google Scholar 

  41. R.J.G.P.L. Higby, I.D. Aggarwal, E.J. Friebele, J. Non-Cryst. Solids 126, 209 (1990)

    Article  Google Scholar 

  42. R. Yang, Y. Wang, X. Hao, J. Zhan, S. Liu, J. Non-Cryst. Solids 357, 2192 (2011)

    Article  Google Scholar 

  43. A.I. Priven, Glass Phys. Chem. 26, 541 (2000)

    Article  Google Scholar 

  44. P. Pascuta, S. Rada, G. Borodi, M. Bosca, L. Popa, E. Culea, J. Mol. Struct. 924–926, 214 (2009)

    Article  Google Scholar 

  45. W.A. Pisarski, T. Goryczka, B. Wodecka-Du´s, M. Pło´nska, J. Pisarska Mater. Sci. Eng. B 122, 94 (2005)

    Article  Google Scholar 

  46. E.I. Kamitsos, A.P. Patsis, M.A. Karakassides, G.D. Chryssikos, J. Non-Cryst. Solids 126, 52 (1990)

    Article  Google Scholar 

  47. B.K. Sudhakar, N.R.K. Chand, H.N.L. Prasanna, G.S. Rao, K.V. Rao, V. Dhand, J. Non-Cryst. Solids 356, 2211 (2010)

    Article  Google Scholar 

  48. B. Sumalatha, I. Omkaram, T.R. Rao, ChL Raju, Phys. B 411, 99 (2013)

    Article  Google Scholar 

  49. G.E. Walrafen, S.R. Samanta, P.N. Krishnan, J. Phys. Chem. 72, 113 (1980)

    Article  Google Scholar 

  50. I. Ardelean, C. Simona, R. Dorina, Phys. B 403, 3682 (2008)

    Article  Google Scholar 

  51. O. Cozar, I. Ardelean, I. Bratu, S. Simon, C. Craciun, L. David, C. Cefan, J. Mol. Struct. 563, 421 (2001)

    Article  Google Scholar 

  52. P. Pascuta, B. Gheorghe, C. Eugen, J. Non-Cryst. Solids 354, 5475 (2008)

    Article  Google Scholar 

  53. A.K. Hassan, L. Borjesson, L.M. Torell, J. Non-Cryst. Solids 172–174, 154 (1994)

    Article  Google Scholar 

  54. B. Karthikeyan, S. Mohan, Phys. B 334, 298 (2003)

    Article  Google Scholar 

  55. R.B. Rao, R.A. Gerhardt, Mater. Chem. Phys. 112, 186 (2008)

    Article  Google Scholar 

  56. I. Gustian, S.Ü. Çelik, A. Zainuddin, W. Suratno, A. Bozkurt, R.E. Siregar, J. Math. Fund. Sci. 46, 50 (2014)

    Article  Google Scholar 

  57. R. Vaish, K.B.R. Varma, Phys. Rev. B 42, 1388 (1990)

    Article  Google Scholar 

  58. ShA Mansour, I.S. Yahia, F. Yakuphanoglu, Dyes Pigments 87, 144 (2010)

    Article  Google Scholar 

  59. N.F. Mott, J. Non-Cryst. Solids 1, 1 (1968)

    Article  Google Scholar 

  60. M.H. Buraidah, L.P. Teo, S.R. Majid, A.K. Arof, Phys. B 404, 1373 (2009)

    Article  Google Scholar 

  61. J.T. Gudmundsson, H.G. Svavarsson, S. Gudjonsson, H.P. Gislason, Phys. B 340, 324 (2003)

    Article  Google Scholar 

  62. W. Jung, Phys. B 403, 636 (2008)

    Article  Google Scholar 

  63. R. Kumar, S.K. Arora, I.V. Shvets, N.E. Rajeevan, P.P. Pradyumnan, D.K. Shukla, J. Appl. Phys. 105, 07D910 (2009)

    Google Scholar 

  64. E. Abd El-Wahabb, Acta Phys. Pol. A 108, 985 (2005)

    Article  Google Scholar 

  65. S. Mahadevan, A. Giridhar, K.J. Rao, J. Phys. C: Solid State Phys. 10, 4499 (1977)

    Article  Google Scholar 

  66. E.M.A. Hamzawy, R.M.M. Morsi, F.H. Margha, J. Mater. Sci.: Mater. Electron. 26, 1252 (2015)

    Google Scholar 

  67. M.H. Suhail, I.M. Al-Essa, R.A. Ahmed, Int. J. Eng. Tech. Res. (IJETR) 2, 379 (2014)

    Google Scholar 

  68. M.W. Barsoum, “Fundamentals of Ceramics”, (Series in Material Science and Engineering) (McGraw-Hill, New York, 1977), p. 543

    Google Scholar 

  69. F. Carpi, D.D. Rossi, R. Kornbluh, R. Pelrine, P.S. Larsen (eds.), Dielectric Elastomers as Electromechanical Transducers (Elsevier, Hungary, 2008), p. 344

    Google Scholar 

  70. N.D. Sankır, E. Aydın, M. Sankır, Int. J. Electrochem. Sci. 9, 3864 (2014)

    Google Scholar 

  71. A.G. Mostafaa, A.H. El-Dosokey, K.H. Idress, H.M. Goumaa, Int. J. Res. Eng. Sci. (IJRES) 2, 58 (2014)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Morsi M. Morsi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Morsi, R.M.M., Ibrahim, S., Abo-Naf, S. et al. Effect of alkaline earth metal oxides on the dielectric, structural and physico-chemical properties of lithium–zinc–lead-borates. J Mater Sci: Mater Electron 27, 4147–4156 (2016). https://doi.org/10.1007/s10854-016-4276-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-4276-0

Keywords

Navigation