Log in

Regulating microwave absorption and energy bandgap using cauliflower-like polyaniline coated on La0.8Sr0.2FeO3 nanoparticles

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this research, La0.8Sr0.2FeO3/cauliflower-like polyaniline (PANi) nanocomposite was architected based on a novel complementary method using dodecylbenzenesulfonic acid as a do** agent. The prepared nanocomposite was characterized using Fourier transform infrared, X-ray powder diffraction, field emission scanning electron microscopy, vibrating sample magnetometer diffuse reflection spectroscopy, and vector network analyzer analyses. All of the used analyses attested that the pure structure of materials has been synthesized. Polarizability, energy bandgap, magnetic property, and microwave absorbing features were tailored by loading the various mass fraction of PANi. Exclusive interactions between the nanoparticles with alkaline property and aniline monomers along the experimental route led to the preparation of nanocomposite with unique morphology. Inserting PANi augmented softness and isotropic magnetic property of the prepared nanocomposite, desirable for microwave absorption. Moreover, polyacrylonitrile (PAN) was applied as a novel microwave absorbing matrix. The maximum reflection loss (RL) of La0.8Sr0.2FeO3/PANi10%/PAN was − 69.24 dB at 12.62 GHz with an efficient bandwidth of 6.47 GHz (RL < − 10 dB) meanwhile the efficient bandwidth was enhanced to 6.97 GHz (RL < − 10 dB) for La0.8Sr0.2FeO3/PANi30%/PAN nanocomposite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 1

Similar content being viewed by others

References

  1. H. Chen, W. Ma, Z. Huang, Y. Zhang, Y. Huang, Y. Chen, Adv. Opt. Mater. 7, 1801318 (2019)

    Article  CAS  Google Scholar 

  2. D. Zhang, T. Liu, J. Cheng et al., Nano-Micro Lett. 11, 38 (2019)

    Article  CAS  Google Scholar 

  3. Q. Li, Z. Zhang, L. Qi, Q. Liao, Z. Kang, Y. Zhang, Adv. Sci. 6, 1801057 (2019)

    Article  CAS  Google Scholar 

  4. R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Express 5, 105012 (2018)

    Article  CAS  Google Scholar 

  5. R. Peymanfar, F. Azadi, Nano-Struct. Nano-Objects 17, 112 (2019)

    Article  CAS  Google Scholar 

  6. R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, A. Cheldavi, Mater. Res. Express 6, 075004 (2019)

    Article  CAS  Google Scholar 

  7. M.S. Cao, X.X. Wang, M. Zhang et al., Adv. Funct. Mater. 29, 1807398 (2019)

    Article  CAS  Google Scholar 

  8. Z. Wu, K. Pei, L. **ng, X. Yu, W. You, R. Che, Adv. Funct. Mater. 29, 1901448 (2019)

    Article  CAS  Google Scholar 

  9. P. He, M. Cao, J.-C. Shu et al., ACS Appl. Mater. Interfaces 11, 12535–12543 (2019)

    Article  CAS  Google Scholar 

  10. L. Wang, X. Yu, X. Li, J. Zhang, M. Wang, R. Che, Chem. Eng. J. 383, 123099 (2019)

    Article  CAS  Google Scholar 

  11. X. Cui, X. Liang, J. Chen, W. Gu, G. Ji, Y. Du, Carbon 156, 49–57 (2019)

    Article  CAS  Google Scholar 

  12. B. Zhao, G. Shao, B. Fan et al., J. Mater. Chem. C 3, 10862 (2015)

    Article  CAS  Google Scholar 

  13. L. **ng, X. Li, Z. Wu et al., Chem. Eng. J. 379, 122241 (2020)

    Article  CAS  Google Scholar 

  14. X. Cui, W. Liu, W. Gu, X. Liang, G. Ji, Inorg. Chem. Front. 6, 590 (2019)

    Article  CAS  Google Scholar 

  15. D.-Q. Zhang, T.-T. Liu, J.-C. Shu et al., ACS Appl. Mater. Interfaces 11, 26807 (2019)

    Article  CAS  Google Scholar 

  16. X. Liang, X. Zhang, W. Liu, D. Tang, B. Zhang, G. Ji, J. Mater. Chem. C 4, 6816 (2016)

    Article  CAS  Google Scholar 

  17. X. Shi, W. You, Y. Zhao, X. Li, Z. Shao, R. Che, Nanoscale 11, 17270 (2019)

    Article  CAS  Google Scholar 

  18. J. Ma, X. Wang, W. Cao et al., Chem. Eng. J. 339, 487 (2018)

    Article  CAS  Google Scholar 

  19. S.-Q. Lv, W. Xu, W. Huang, G.-C. Lv, G.-S. Wang, RSC Adv. 9, 13088 (2019)

    Article  CAS  Google Scholar 

  20. B. Quan, X. Liang, H. Yi et al., J. Mater. Chem. C 6, 11659 (2018)

    Article  CAS  Google Scholar 

  21. H. Wang, F. Meng, F. Huang et al., ACS Appl. Mater. Interfaces 11, 12142 (2019)

    Article  CAS  Google Scholar 

  22. R. Peymanfar, M. Ahmadi, S. Javanshir, Mater. Res. Express 6, 085063 (2019)

    Article  CAS  Google Scholar 

  23. R. Peymanfar, S. Keykavous-Amand, M.M. Abadi, Y. Yassi, Constr. Build. Mater. 263, 120042 (2020)

    Article  CAS  Google Scholar 

  24. R. Peymanfar, F. Norouzi, S. Javanshir, Mater. Res. Express 6, 035024 (2018)

    Article  CAS  Google Scholar 

  25. R. Wang, E. Yang, X. Qi et al., Appl. Surf. Sci. 516, 146159 (2020)

    Article  CAS  Google Scholar 

  26. R. Peymanfar, J. Karimi, R. Fallahi, J. Appl. Polym. Sci. 137, 48430 (2019)

    Article  CAS  Google Scholar 

  27. R. Peymanfar, S. Javanshir, M.R. Naimi-Jamal, A. Cheldavi, M. Esmkhani, J. Electron. Mater. 48, 3086 (2019)

    Article  CAS  Google Scholar 

  28. R. Peymanfar, F. Norouzi, S. Javanshir, Synth. Met. 252, 40 (2019)

    Article  CAS  Google Scholar 

  29. R. Peymanfar, M. Rahmanisaghieh, Mater. Res. Exp. 6, 105025 (2019)

    Article  CAS  Google Scholar 

  30. R. Peymanfar, N. Khodamoradipoor, Phys Status Solidi A 216, 1900057 (2019)

    Article  CAS  Google Scholar 

  31. M.A. Deshmukh, M. Gicevicius, A. Ramanaviciene, M.D. Shirsat, R. Viter, A. Ramanavicius, Sens. Actuators B 248, 527 (2017)

    Article  CAS  Google Scholar 

  32. X. Zhao, Y.-L. Zhang, X.-X. Wang, H.-L. Shi, W.-Z. Wang, M.-S. Cao, J. Mater. Sci.: Mater. Electron. 27, 11518 (2016)

    CAS  Google Scholar 

  33. B. Qu, C. Zhu, C. Li, X. Zhang, Y. Chen, ACS Appl. Mater. Interfaces 8, 3730 (2016)

    Article  CAS  Google Scholar 

  34. H. Yang, J. Dai, Y. Lin, N. Han, X. Liu, J. Wang, J. Mater. Sci.: Mater. Electron 28, 10853 (2017)

    CAS  Google Scholar 

  35. Y. Zuo, Z. Yao, J. Zhou, X. Zhang, Y. Ning, J. Mater. Sci.: Mater. Electron 29, 922 (2018)

    CAS  Google Scholar 

  36. R.C. Che, L.M. Peng, X.F. Duan, Q. Chen, A.X. Liang, Adv. Mater. 16, 401 (2004)

    Article  CAS  Google Scholar 

  37. J. Liu, R. Che, H. Chen et al., Small 8, 1214 (2012)

    Article  CAS  Google Scholar 

  38. Q. Liu, X. Xu, W. **a et al., Nanoscale 7, 1736 (2015)

    Article  CAS  Google Scholar 

  39. Y. Lin, J. Wang, H. Yang, L. Wang, J. Mater. Sci.: Mater. Electron. 28, 17968 (2017)

    CAS  Google Scholar 

  40. Z. Jia, K. Kou, S. Yin et al., Composites B 189, 107895 (2020)

    Article  CAS  Google Scholar 

  41. B. Zhao, X. Guo, W. Zhao et al., ACS Appl. Mater. Interfaces 8, 28917 (2016)

    Article  CAS  Google Scholar 

  42. B. Zhao, G. Shao, B. Fan, W. Zhao, Y. **e, R. Zhang, J. Mater. Chem. A 3, 10345 (2015)

    Article  CAS  Google Scholar 

  43. R. Peymanfar, F. Fazlalizadeh, Chem. Eng. J. (2020). https://doi.org/10.1016/j.cej.2020.126089

    Article  Google Scholar 

  44. Q. Liu, Q. Cao, X. Zhao et al., ACS Appl. Mater. Interfaces 7, 4233 (2015)

    Article  CAS  Google Scholar 

  45. B. Zhao, W. Zhao, G. Shao, B. Fan, R. Zhang, ACS Appl. Mater. Interfaces 7, 12951 (2015)

    Article  CAS  Google Scholar 

  46. B. Zhao, X. Guo, W. Zhao et al., Nano Res. 10, 331 (2017)

    Article  CAS  Google Scholar 

  47. L. Long, E. Yang, X. Qi et al., ACS Sustain. Chem. Eng. 8, 613 (2019)

    Article  CAS  Google Scholar 

  48. L. Long, E. Yang, X. Qi et al., J. Mater. Chem. C 7, 8975 (2019)

    Article  CAS  Google Scholar 

  49. B. Zhang, J. Wang, H. Tan et al., J. Mater. Sci.: Mater. Electron. 29, 3348 (2018)

    CAS  Google Scholar 

  50. R. Peymanfar, S. Ghorbanian-Gezaforodi, E. Selseleh-Zakerin, A. Ahmadi, A. Ghaffari, Ceram. Int. (2020). https://doi.org/10.1016/j.ceramint.2020.05.139

    Article  Google Scholar 

  51. R. Peymanfar, F. Azadi, J. Mater. Sci.: Mater. Electron. 31, 9586 (2020). https://doi.org/10.1007/s10854-020-03501-9

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reza Peymanfar.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 222 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peymanfar, R., Selseleh-Zakerin, E., Ahmadi, A. et al. Regulating microwave absorption and energy bandgap using cauliflower-like polyaniline coated on La0.8Sr0.2FeO3 nanoparticles. J Mater Sci: Mater Electron 32, 25679–25687 (2021). https://doi.org/10.1007/s10854-020-04203-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-04203-y

Navigation