Log in

Investigation on the synthesis, characterization, and optimization of ternary BaLa0.4Ce0.1Fe11.5O19/ATP/PANI composites as microwave absorption material

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

In this work, La-Ce-doped hexagonal barium ferrite nanoparticles BaLa0.4Ce0.1Fe11.5O19 were prepared by sol–gel self-propagation method. Based on the influence of material structure and impedance matching on microwave absorption properties, bar-shaped attapulgite (ATP) and highly conductive polyaniline (PANI) were introduced, and BaLa0.4Ce0.1Fe11.5O19/attapulgite/polyaniline (BaLa0.4Ce0.1Fe11.5O19/ATP/PANI) ternary composites were prepared by one-step in situ polymerization. The effects of the mass ratio of BaLa0.4Ce0.1Fe11.5O19 and ATP, the content of BaLa0.4Ce0.1Fe11.5O19 and ATP, polymerization time, and polymerization temperature on the microwave absorption properties have been investigated. The phase composition, micromorphology, absorption properties, and microwave absorption mechanism of the materials were analyzed. The results show that the ternary composite has excellent microwave absorption properties and may become one of the most promising absorption materials. After optimization of the preparation process, when the mass ratio of BaLa0.4Ce0.1Fe11.5O19 and ATP is 93:7, the content of BaLa0.4Ce0.1Fe11.5O19 and ATP is 20 wt%, the polymerization time is 8 h, and the polymerization temperature is 0 °C, BaLa0.4Ce0.1Fe11.5O19/attapulgite/polyaniline(BaLa0.4Ce0.1Fe11.5O19/ATP/PANI) ternary composite has unparalleled microwave absorption performance, the minimum reflection loss can reach − 46.40 dB at 16.2 GHz with a thickness of only 1.6 mm, and the absorption bandwidth with reflection loss below − 10 dB is up to 4.1 GHz (13.9–18 GHz).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Canada)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. M. Wang, Y. Lin, Y. Liu, H. Yang, J. Mater. Sci. 30(15), 14344–14354 (2019)

    CAS  Google Scholar 

  2. Y. Wang, X. Gao, Y. Fu, X. Wu, Q. Wang, W. Zhang, C. Luo, Compos. B 169, 221–228 (2019)

    Article  CAS  Google Scholar 

  3. H. Zhao, Y. Cheng, H. Lv, G. Ji, Y. Du, Carbon 142, 245–253 (2019)

    Article  CAS  Google Scholar 

  4. C.H. Peng, H.W. Wang, S.W. Kan, M.Z. Shen, Y.M. Wei, S.Y. Chen, J. Magn. Magn. Mater. 284, 113–119 (2004)

    Article  CAS  Google Scholar 

  5. K. Shi, J. Li, S. He, H. Bai, Y. Hong, Y. Wu, Z. Zhou, Curr. Appl. Phys. 19(7), 842–848 (2019)

    Article  Google Scholar 

  6. H. Wei, J. Dong, X. Fang, W. Zheng, Y. Sun, Y. Qian, Y. Huang, Compos. Sci. Technol. 169, 52–59 (2019)

    Article  CAS  Google Scholar 

  7. U. Topal, J. Magn. Magn. Mater. 320(3–4), 331–335 (2008)

    Article  CAS  Google Scholar 

  8. S.H. Mahmood, A.N. Aloqaily, Y. Maswadeh, A. Awadallah, I. Bsoul, M. Awawdeh, H. Juwhari, Solid State Phenom. 232, 65–92 (2015)

    Article  Google Scholar 

  9. M.J. Liu, X.L. Liu, J.X. Wang, Z.X. Wei, L. Jiang, Electromagnetic synergetic actuators based on polypyrrole/Fe3O4 hybrid nanotube arrays. Nano Res. 3, 670–675 (2010)

    Article  CAS  Google Scholar 

  10. J. Luo, L. Yue, H. Ji, K. Zhang, N. Yu, J. Mater. Sci. 54(8), 6332–6346 (2019)

    Article  CAS  Google Scholar 

  11. X. Tang, Y. Yang, Appl. Surf. Sci. 255(23), 9381–9385 (2009)

    Article  CAS  Google Scholar 

  12. K. Singh, A. Ohlan, V.H. Pham, R. Balasubramaniyan, S. Varshney, J. Jang, S.H. Hur, W.M. Choi, M. Kumar, S.K. Dhawan, B.S. Kong, J.S. Chung, Nanoscale. 5, 2411–2420 (2013)

    Article  CAS  Google Scholar 

  13. J. Liu, J. Zhang, Y. Li, M. Zhang, Mater. Chem. Phys. 163, 470–477 (2015)

    Article  CAS  Google Scholar 

  14. T. Qi, Z. Yao, J. Zhou, H. Lin, P. Liu, Y. Lei, Y. Zuo, J. Alloys Compd. 769, 669–677 (2018)

    Article  CAS  Google Scholar 

  15. G.A. Bazilevsky, H.C. Affronti, X. Wei, S.L. Campbell, K.E. Wellen, R. Marmorstein, J. Biol. Chem. 294(18), 7259–7268 (2019)

    Article  CAS  Google Scholar 

  16. H. Gu, S. Yoshinari, R. Ghosh, A.V. Ignatochkina, P.D. Gollnick, K.S. Murakami, C.K. Ho, Nucleic Acids Res. 44(5), 2337–2347 (2016)

    Article  CAS  Google Scholar 

  17. H. Pan, H. Hou, J. Chen, H. Li, L. Wang, Adsorption 24(5), 459–469 (2018)

    Article  CAS  Google Scholar 

  18. W. Nie, F. Wang, R. Hao, L. Zhang, Q. Chen, F. Wei, Y. Liu, Microchem. J. 150, 104076 (2019)

    Article  CAS  Google Scholar 

  19. Y. Liu, P. Liu, Z. Su, F. Li, F. Wen, Appl. Surf. Sci. 255(5), 2020–2025 (2008)

    Article  CAS  Google Scholar 

  20. W.E. Scott III, B.P. Weegman, J. Ferrer-Fabrega, S.A. Stein, T. Anazawa, V.A. Kirchner, A.N. Balamurugan, Transplant. Proc. 42(6), 2011–2015 (2010)

    Article  CAS  Google Scholar 

  21. J.P. Pouget, M.E. Jozefowicz, A.E.A. Epstein, X. Tang, A.G. MacDiarmid, Macromolecules 24(3), 779–789 (1991)

    Article  CAS  Google Scholar 

  22. Z. Mosleh, P. Kameli, A. Poorbaferani, M. Ranjbar, H. Salamati, J. Magn. Magn. Mater. 397, 101–107 (2016)

    Article  CAS  Google Scholar 

  23. A. Tadjarodi, H. Kerdari, M. Imani, J. Alloys Compd. 554, 284–292 (2013)

    Article  CAS  Google Scholar 

  24. B. Lesiak, A. Jablonski, J. Zemek, M. Trchova, J. Stejskal, Langmuir 16(3), 1415–1423 (2000)

    Article  CAS  Google Scholar 

  25. F. Xu, L. Ma, M. Gan, J. Tang, Z. Li, J. Zheng, J. Hu, J. Alloys Compd. 593, 24–29 (2014)

    Article  CAS  Google Scholar 

  26. Y. Yang, M. Wan, J. Mater. Chem. 12, 897–901 (2002)

    Article  CAS  Google Scholar 

  27. L. Zhang, X. Yu, H. Hu, Y. Li, M. Wu, Z. Wang, C. Chen, Sci. Rep. 5, 9298 (2015)

    Article  CAS  Google Scholar 

  28. P. Liu, Z. Yao, J. Zhou, Ceram. Int. 42(7), 9241–9249 (2016)

    Article  CAS  Google Scholar 

  29. A.P. Singh, M. Mishra, P. Sambyal, B.K. Gupta, B.P. Singh, A. Chandra, S.K.J. Dhawan, Mater. Chem. A 2(10), 3581–3593 (2014)

    Article  CAS  Google Scholar 

  30. L. Wang, Y. Huang, X. Sun, H. Huang, P. Liu, M. Zong, Y. Wang, Nanoscale 6(6), 3157–3164 (2014)

    Article  CAS  Google Scholar 

  31. S. Biswas, I. Arief, S.S. Panja, S. Bose, ACS Appl. Mater. Interfaces. 9(3), 3030–3039 (2017)

    Article  CAS  Google Scholar 

  32. V. Panwar, R.M. Mehra, Polym. Eng. Sci. 48, 2178–2187 (2010)

    Article  Google Scholar 

  33. W. Li, T. Qiu, L. Wang, S. Ren, J. Zhang, L. He, X. Li, ACS Appl. Mater. Interfaces 5(3), 883–891 (2013)

    Article  CAS  Google Scholar 

  34. E. Drake, F. Medina, M. Horno, IEEE Trans. Microwave Theory Tech. 41(2), 260–267 (1993)

    Article  Google Scholar 

  35. Y. Zhang, Y. Huang, H. Chen, Z. Huang, Y. Yang, P. **ao, Y. Chen, Carbon 105, 438–447 (2016)

    Article  CAS  Google Scholar 

  36. J.E. Yoo, J.L. Cross, T.L. Bucholz, K.S. Lee, M.P. Espe, Y.L. Loo, J. Mater. Chem. 17(13), 1268–1275 (2007)

    Article  CAS  Google Scholar 

  37. X. Huang, J. Zhang, M. Lai, T. Sang, J. Alloys Compd. 627, 367–373 (2015)

    Article  CAS  Google Scholar 

  38. F. Meng, H. Wang, F. Huang, Y. Guo, Z. Wang, D. Hui, Z. Zhou, Compos. Part B 137, 260–277 (2018)

    Article  CAS  Google Scholar 

  39. B. Lu, X.L. Dong, H. Huang, X.F. Zhang, X.G. Zhu, J.P. Lei, J.P. Sun, J. Magn. Magn. Mater. 320(6), 1106–1111 (2008)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC. 21664009, 51063003), the Ministry of Science and Technology Project (No. 2009GJG10041), the Fundamental Research Funds for the Universities of Gansu (No. 1105ZTC136), and the Natural Science Foundation of Gansu Province (No. 1208RJZA173)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Huixia Feng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Feng, H., Pan, K., Shang, Q. et al. Investigation on the synthesis, characterization, and optimization of ternary BaLa0.4Ce0.1Fe11.5O19/ATP/PANI composites as microwave absorption material. J Mater Sci: Mater Electron 31, 3769–3784 (2020). https://doi.org/10.1007/s10854-020-02896-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-020-02896-9

Navigation