Log in

Structure, dielectric and electrocaloric properties of (Ba0.87Ca0.13(Ti0.9Zr0.1)1 − x (Zn1/3Nb2/3)xO3 ferroelectric ceramics

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The impact of Zn and Nb replacements on the dielectric, ferroelectric, and electrocaloric (EC) characteristics of BCZT−x%ZN ceramics was thoroughly studied. The introduction of Zn and Nb into BCZT−x%ZN not only enhances the dielectric permittivity but also reduces the curie temperature. By employing P–E hysteresis loops across a broad temperature range and applying externally induced electric fields, we investigated the EC temperature change (ΔT) using the Maxwell relation. The EC effect response was determined versus temperature for all BCZT−x%ZN ceramic compositions, ranging from x = 0 to 2%, through ferroelectric polarization and pyroelectric measurements. BCZT−0.5%ZN showed a maximum EC temperature change of ∆T = 0.701 K at 3 kV/mm, with a matching EC responsivity (ξ = ΔT/ΔE) of 0.233 K mm/kV. This discovery underscores the highly promising nature of this material family for electrocaloric applications in proximity to ambient temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Thailand)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Data availability

Not applicable.

References

  1. Y. Saito, H. Takao, T. Tani, T. Nonoyama, K. Takatori, T. Homma, T. Nagaya, M. Nakamura, Nature (2004). https://doi.org/10.1038/nature03028

    Article  PubMed  Google Scholar 

  2. Y. Sun, S.E. Shirsath, S. Zhang, D. Wang, APL Mater. (2023). https://doi.org/10.1063/1.3641975

    Article  Google Scholar 

  3. G. Ramesh, M.R. Rao, V. Sivasubramanian, V. Subramanian, Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2015.11.028

    Article  Google Scholar 

  4. V.S. Puli, D.K. Pradhan, B.C. Riggs, D.B. Chrisey, R.S. Katiyar, Alloys Compd. (2014). https://doi.org/10.1016/j.jallcom.2013.09.108

    Article  Google Scholar 

  5. B. Tuttle, D. Payne, Ferroelectrics (1981). https://doi.org/10.1080/00150198108223496

    Article  Google Scholar 

  6. M. Valant, Prog. Mater. Sci. Mater. Sci. (2012). https://doi.org/10.1016/j.pmatsci.2012.02.001

    Article  Google Scholar 

  7. A. Mischenko, Q. Zhang, J. Scott, R. Whatmore, N. Mathur, Science (2006). https://doi.org/10.1126/science.1123811

    Article  PubMed  Google Scholar 

  8. B. Neese, B. Chu, S.-G. Lu, Y. Wang, E. Furman, Q. Zhang, Large electrocaloric effect in ferroelectric polymers near room temperature. Science (2008). https://doi.org/10.1126/science.1159655

    Article  PubMed  Google Scholar 

  9. B. Lu, X. Jian, X. Lin, Y. Yao, T. Tao, B. Liang, H. Luo, S.-G. Lu, Crystals (2020). https://doi.org/10.3390/cryst10060451

    Article  Google Scholar 

  10. X. Moya, S. Kar-Narayan, N.D. Mathur, Nat. Mater. (2014). https://doi.org/10.1038/nmat3951

    Article  PubMed  Google Scholar 

  11. M.B. Abdessalem, I. Kriaa, A. Aydi, N. Abdelmoula, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2018.04.194

    Article  Google Scholar 

  12. L. Khemakhem, A. Maalej, A. Kabadou, A.B. Salah, A. Simon, M. Maglione, J. Alloys Compd. (2008). https://doi.org/10.1016/j.jallcom.2007.02.091

    Article  Google Scholar 

  13. M.B. Abdessalem, A. Aydi, Z. Sassi, L. Seveyrat, V. Perrin, N. Abdelmoula, H. Khemakhem, L. Lebrun, Appl. Phys. A (2021). https://doi.org/10.1007/s00339-020-04230-w

    Article  Google Scholar 

  14. I.M. Reaney, D. Iddles, Am. Ceram. Soc. (2006). https://doi.org/10.1111/j.1551-2916.2006.01025.x

    Article  Google Scholar 

  15. D. Gracia, S. Lafuerza, J. Blasco, M. Evangelisti, APL Mater. (2023). https://doi.org/10.1111/j.1151-2916.1987.tb05746.x

    Article  Google Scholar 

  16. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Asbani, J.-L. Dellis, G. Cordoyiannis, B. Allouche, H. Khemakhem, Z. Kutnjak, M. El Marssi, Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.01.159

    Article  Google Scholar 

  17. T. Wang, X. Wei, Q. Hu, L. **, Z. Xu, Y. Feng, Mater. Sci. Eng. B (2013). https://doi.org/10.1016/j.mseb.2013.07.003

    Article  Google Scholar 

  18. M.B. Abdessalem, S. Aydi, A. Aydi, N. Abdelmoula, Z. Sassi, H. Khemakhem, Appl. Phys. A (2017). https://doi.org/10.1007/s00339-017-1196-7

    Article  Google Scholar 

  19. J. Wang, G. Rong, N. Li, C. Li, Q. Jiang, H. Cheng, Appl. Chem. (2015). https://doi.org/10.1134/S107042721503026X

    Article  Google Scholar 

  20. Y. Tian, Y. Gong, D. Meng, Y. Li, B. Kuang, Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3727-3

    Article  Google Scholar 

  21. S.G. Lu, Q. Zhang, Adv. Mater. (2009). https://doi.org/10.1016/j.pmatsci.2012.02.001

    Article  PubMed  Google Scholar 

  22. S.K. Upadhyay, V.R. Reddy, P. Bag, R. Rawat, S. Gupta, A. Gupta, Appl. Phys. Lett. (2014). https://doi.org/10.1063/1.4896044

    Article  Google Scholar 

  23. G. Singh, V. Tiwari, P. Gupta, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4829635

    Article  Google Scholar 

  24. J. Karthik, L. Martin, Appl. Phys. Lett. (2011). https://doi.org/10.1063/1.3614453

    Article  Google Scholar 

  25. G. Shirane, A. Takeda, Phys. Soc. Jpn. (1952). https://doi.org/10.1143/JPSJ.7.1

    Article  Google Scholar 

  26. C. Zhou, W. Liu, D. Xue, X. Ren, H. Bao, J. Gao, L. Zhang, Appl. Phys. Lett. (2012). https://doi.org/10.1063/1.4724216

    Article  PubMed  PubMed Central  Google Scholar 

  27. R. Pirc, Z. Kutnjak, R. Blinc, Q. Zhang, Appl. Phys. (2011). https://doi.org/10.1063/1.3650906

    Article  Google Scholar 

  28. S.-G. Lu, X. Lin, J. Li, D. Li, Y. Yao, T. Tao, B. Liang, Alloys Compd. (2021). https://doi.org/10.1016/j.jallcom.2021.159519

    Article  Google Scholar 

  29. X. Moya, E. Stern-Taulats, S. Crossley, D. González-Alonso, S. Kar-Narayan, A. Planes, L. Mañosa, N.D. Mathur, Adv. Mater. (2013). https://doi.org/10.1002/adma.201203823

    Article  PubMed  Google Scholar 

  30. B. Asbani, J.-L. Dellis, A. Lahmar, M. Courty, M. Amjoud, Y. Gagou, K. Djellab, D. Mezzane, Z. Kutnjak, M. El Marssi, Appl. Phys. Lett. (2015). https://doi.org/10.1063/1.4906864

    Article  Google Scholar 

  31. H. Kaddoussi, Y. Gagou, A. Lahmar, J. Belhadi, B. Allouche, J.-L. Dellis, M. Courty, H. Khemakhem, M. El Marssi, Solid State Commun.Commun. (2015). https://doi.org/10.1016/j.ssc.2014.10.003

    Article  Google Scholar 

  32. X.Q. Liu, T.T. Chen, M.S. Fu, Y.J. Wu, X.M. Chen, Ceram. Int. (2014). https://doi.org/10.1016/j.ceramint.2014.03.175

    Article  Google Scholar 

  33. M.B. Abdessalem, A. Aydi, N. Abdelmoula, J. Alloys Compd.Compd (2019). https://doi.org/10.1016/j.jallcom.2018.10.042

    Article  Google Scholar 

  34. I. Ksentini, M.B. Abdessalem, W. Cheikhrouhou-Koubaa, M. Koubaa, A. Cheikhrouhou, Appl. Phys. A (2020). https://doi.org/10.1007/s00339-020-04116-x

    Article  Google Scholar 

  35. L. Shebanovs, K. Borman, W. Lawless, A. Kalvane, Ferroelectrics (2010). https://doi.org/10.1080/00150190211761

    Article  Google Scholar 

  36. Y. Bai, X. Han, L. Qiao, Appl. Phys. Lett. (2013). https://doi.org/10.1063/1.4810916

    Article  Google Scholar 

  37. H. Kaddoussi, A. Lahmar, Y. Gagou, J.-L. Dellis, H. Khemakhem, M. El Marssi, Ceram. Int. (2015). https://doi.org/10.1016/j.ceramint.2015.08.080

    Article  Google Scholar 

  38. L.B. Abdessalem, M.B. Abdessalem, A. Aydi, Z. Sassi, J. Mater. Sci. Mater. Electron. (2017). https://doi.org/10.1007/s10854-017-7285-8

    Article  Google Scholar 

  39. Y.S. Kim, J. Yoo, J. Electron. Mater. (2015). https://doi.org/10.1007/s11664-015-3732-6

    Article  Google Scholar 

  40. M.B. Abdessalem, S. Chkoundali, A. Oueslati, A. Aydi, RSC Adv. (2022). https://doi.org/10.1039/D2RA03371B

    Article  PubMed  PubMed Central  Google Scholar 

  41. S. Belkhadir, A. Neqali, M. Amjoud, D. Mezzane, A. Alimoussa, E. Choukri, Y. Gagou, I. Raevski, M. El Marssi, I.A. Luk’yanchuk, B. Rožič, Z. Kutnjak, J. Mater. Sci. Mater. Electron. (2019). https://doi.org/10.1007/s10854-019-01776-1

    Article  Google Scholar 

  42. Z. Abdelkafi, I. Kriaa, Ceram. Int. (2018). https://doi.org/10.1016/j.ceramint.2017.12.041

    Article  Google Scholar 

  43. S. Mönch, R. Reiner, P. Waltereit et al., MRS Adv. (2023). https://doi.org/10.1557/s43580-023-00670-7

    Article  Google Scholar 

  44. X. Ma, W. Shi, Y. Yang, D.O. Alikin, Y.Y. Shur, J. GAO, X. Wei, G. Liu, H. Du, Li. **, Ceram. Int. (2023). https://doi.org/10.1016/j.ceramint.2023.02.225

    Article  Google Scholar 

  45. H. Kaddoussi, A. Lahmar, Y. Gagou, B. Manoun, J.N. Chotard, J.L. Dellis, Z. Kutnjak, H. Khemakhem, B. Elouadi, M. El Marssi, Alloys Compd. (2017). https://doi.org/10.1016/j.jallcom.2017.04.148

    Article  Google Scholar 

  46. D. Maurya, S. Priya, Integr. Ferroelectr.. Ferroelectr. (2015). https://doi.org/10.1080/10584587.2015.1092629

    Article  Google Scholar 

Download references

Funding

The authors have not disclosed any funding.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study’s conception and design. MBA, IK, ZS, AA, and NA prepared the materials, collected the data, and conducted the analysis. MBA, IK, AA, and NA wrote the manuscript, with all writers commenting on prior versions.

Corresponding author

Correspondence to Manel Ben Abdessalem.

Ethics declarations

Competing interests

The authors have no competing interests to declare that are relevant to the content of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ben Abdessalem, M., Kriaa, I., Sassi, Z. et al. Structure, dielectric and electrocaloric properties of (Ba0.87Ca0.13(Ti0.9Zr0.1)1 − x (Zn1/3Nb2/3)xO3 ferroelectric ceramics. J Mater Sci: Mater Electron 35, 1215 (2024). https://doi.org/10.1007/s10854-024-13009-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10854-024-13009-1

Navigation