Log in

Optical and thermal quenching properties of Al-doped Ba1.98SiO4:0.02Eu2+ phosphor synthesized with different Si3N4/SiO2 ratio

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

An intense emission green color phosphor of Al-doped Ba1.98SiO4:0.02Eu2+ synthesized with different Si3N4/SiO2 ratio was prepared by conventional sintering method. The X-ray diffraction patterns, the photoluminescence, scanning micrograph and thermal quenching properties of Ba1.98SiO4:0.02Eu2+ with different Si3N4/SiO2 ratio were investigated in detail. As the Si3N4/SiO2 ratio increases, the emission intensity enhanced gradually until the optimum Si3N4/SiO2 ratio reached 3/2. The PL intensity with Si3N4/SiO2 = 3/2 is about four times of the initial intensity of Ba1.98SiO4:0.02Eu2+ phosphor and the reason was discussed clearly. Furthermore, when we introduced Al3+ ions into the host, the samples exhibited outstanding optical properties and smaller thermal quenching behavior compared with Ba1.98SiO4:0.02Eu2+ phosphor. The emission intensity of Ba1.98Si1−xAlxO4:0.02Eu2+ series increased until x reached 7% and the emission intensity of x = 0.07 is 5 times of the originated intensity of Ba1.98SiO4:0.02Eu2+ synthesized without Si3N4. The smaller thermal quenching behavior of Al-doped phosphors was studied clearly, too. All the results suggested that Al-doped Ba1.98SiO4:0.02Eu2+ phosphor synthesized with Si3N4/SiO2 = 3/2 can be a candidate green phosphor for WLEDs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. L. Wang, R.J. **e, T. Suehiro, T. Takeda, N. Hirosaki, Down Conversion nitride materials for solid state lighting: recent advances and perspectives. Chem. Rev. 118, 1951–2009 (2018)

    Article  Google Scholar 

  2. X. Qin, X.W. Liu, W. Huang, M. Bettinelli, X.G. Liu, Lanthanide-activated phosphors based on 4f–5d optical transitions: theoretical and experimental aspects. Chem. Rev. 117, 4488–4527 (2017)

    Article  Google Scholar 

  3. Z.G. **a, Q.L. Liu, Progress in discovery and structural design of color conversion phosphors for LEDs. Prog. Mater Sci. 84, 59–117 (2016)

    Article  Google Scholar 

  4. M.M. Shang, S.S. Liang, H.Z. Lian, J. Lin, Luminescence properties of Ca19Ce(PO4)14:A (A = Eu3+/Tb3+/Mn2+) phosphors with abundant colors: abnormal coexistence of Ce4+/3+-Eu3+ and energy transfer of Ce3+ → Tb3+/Mn2+ and Tb3+-Mn2+. Inorg. Chem. 56, 6131–6140 (2017)

    Article  Google Scholar 

  5. E.F. Schubert, J.K. Kim, Solid-state light sources getting smart. Science 308, 1274–1278 (2005)

    Article  Google Scholar 

  6. M.R. Krames, O.B. Shchekin, R. Mueller-Mach, G.O. Mueller, L. Zhou, G. Harbers, M.G. Craford, Status and future of high-power light-emitting diodes for solid-state lighting. J. Disp. Technol. 3, 160–175 (2007)

    Article  Google Scholar 

  7. R.J. **e, N. Hirosaki, M. Mitomo, K. Takahashi, K. Sakuma, Highly efficient white-light-emitting diodes fabricated with short-wavelength yellow oxynitride phosphors. Appl. Phys. Lett. 88, 101–104 (2006)

    Google Scholar 

  8. C.C. Yang, C.M. Lin, Y.J. Chen, Y.T. Wu, S.R. Chuang, R.S. Liu, S.F. Hu, Highly stable three-band white light from an InGaN-based blue light-emitting diode chip precoated with (oxy)nitride green/red phosphors. Appl. Phys. Lett. 90, 123501–123503 (2007)

    Article  Google Scholar 

  9. B. Li, G. Annadurai, L.L. Sun, J. Liang, S.Y. Wang, Q. Sun, X.Y. Huang, High-efficiency cubic-phased blue-emitting Ba3Lu2B6O15:Ce3+ phosphors for ultraviolet-excited white-light-emitting diodes. Opt. Lett. 43, 5138–5141 (2018)

    Article  Google Scholar 

  10. K. Bando, K. Sakano, Y. Noguchi, Y.J. Shimizu, Development of high-bright and pure-white LED lamps. Light Visual Environ. 22, 1–2 (1998)

    Article  Google Scholar 

  11. P. Schlotter, J. Baur, C. Hielscher, M. Kunzer, H. Obloh, R. Schmidt, Schneider, fabrication and characterization of GaN/InGaN/AlGaN double heterostructure LEDs and their application in luminescence conversion LEDs. J. Mater. Sci. Eng. 59, 390–394 (1995)

    Article  Google Scholar 

  12. H. Guo, B. Devakumar, B. Li, X.Y. Huang, Novel Na3Sc2(PO4)3:Ce3+,Tb3+ phosphors for white LEDs: tunable blue–green color emission, high quantum efficiency and excellent thermal stability. Dyes Pigments. 151, 81–88 (2018)

    Article  Google Scholar 

  13. B. Lin, X.Y. Huang, Multicolour tunable luminescence of thermal-stable Ce3+/Tb3+/Eu3+-triactivated Ca3Gd(GaO)3(BO3)4 phosphors via Ce3+→Tb3+→Eu3+ energy transfer for near-UV WLEDs applications. Ceram Int. 44, 4915–4923 (2018)

    Article  Google Scholar 

  14. R. Aceves, M.B. Flores, P. Fabeni, Spectroscopy of CsPbBr3 quantum dots in CsBr:Pb crystals. J. Lumin. 93(1), 27–41 (2001)

    Article  Google Scholar 

  15. A. Swarnkar, R. Chulliyil, V.K. Ravi, Colloidal CsPbBr3 perovskite nanocrystals: luminescence beyond traditional quantum dots. Angew. Chem. Int. Edit. 54, 15424–15428 (2016)

    Article  Google Scholar 

  16. J. Li, L. Xu, T. Wang, Fold EQE improvement up to 6.27% of solution-processed all-inorganic perovskite CsPbBr3 QLEDs via surface ligand density control. Adv Mater. 29(5), (2017)

  17. T.C. Liu, B.M. Cheng, S.F. Hu, Highly stable red oxynitride β-SiAlON:Pr3+ phosphor for light-emitting diodes. Cheminform 42:44, (2011)

    Google Scholar 

  18. O. Yamamoto, M. Ishida, Y. Saitoh, Influence of Mg2+ on the formation of β-SiAlON by the carbothermal reduction-nitridation of homogeneous gel. Inorg. Chem. 3(3), 715–719 (2001)

    Google Scholar 

  19. C. Wang, Z. Zhao, Q. Wu, Enhancing the emission intensity and decreasing the full widths at half maximum of Ba3Si6O12N2:Eu(2+) by Mg(2+) do**. Dalton T. 44(22), 10321 (2015)

    Article  Google Scholar 

  20. C. Wang, Z. Zhao, Q. Wu, The pure-phase Ba3 – xCaxSi6O12N2:Eu2+ green phosphor: synthesis, photoluminescence and thermal properties. Crystengcomm. 16(41), 9651–9656 (2014)

    Article  Google Scholar 

  21. K.A. Denault, J. Brgoch, M.W. Gaultois, A. Mikhailovsky, R. Petry, H. Winkler, S.P. DenBaars, R. Seshadri, Consequences of optimal bond valence on structural rigidity and improved luminescence properties in SrxBa2–xSiO4:Eu2+ orthosilicate phosphors. Chem. Mater. 26, 2275–2282 (2014)

    Article  Google Scholar 

  22. L.Z. He, Z. Song, Q.C. **ang, Z.G. **a, Q.L. Liu, Relationship between thermal quenching of Eu2+ luminescence andcation ordering in (Ba1–xSrx)2SiO4:Eu phosphors. J. Lumin. 180, 163–168 (2016)

    Article  Google Scholar 

  23. D.W. Wen, H. Kuwahara, H. Kato, M. Kobayashi, Y. Sato, T. Masaki, M. Kakihana, Anomalous orange light-emitting(Sr,Ba)2SiO4:Eu2+ phosphors for warm white LEDs. ACS Appl. Mater. Interfaces. 8, 11615–11620 (2016)

    Article  Google Scholar 

  24. L.Z. He, Z. Song, X.H. Jia, Z.G. **a, Q.L. Liu, Consequence of optimal bonding on disordered structure and improved luminescence properties in T-phase (Ba,Ca)2SiO4:Eu2+ Phosphor. Inorg. Chem. 57, 4146–4154 (2018)

    Article  Google Scholar 

  25. L. Litian, N. Lixin, Z. Rongfu, J. Chunyan, P. Mingying, H. Yucheng, C. Jun, H. Yan, T. Ye, H. Liang, Site occupation and photoluminescence properties of Ce3+ in Sr4Ca4La2 (PO4)6O2: experiments and ab initio calculations. Opt. Mater. 57, 7090–7096 (2018)

    Google Scholar 

  26. F. Clabau, X. Rocquefelte, T.L. Mercier, P. Deniard, S. Jobic, M.H. Whangbo, Formulation of phosphorescence mechanisms in inorganic solids based on a new model of defect. Conglomerat. Chem. Mater. 18, 3212–3220 (2006)

    Article  Google Scholar 

  27. P. Dorenbos, Valence stability of lanthanide ions in inorganic. Compounds Chem. Mater. 17, 6452–6456 (2005)

    Article  Google Scholar 

  28. M. Nikl, Wide band gap scintillation materials: progress in the technology and material understanding. Phys. Status Solid. 178(2), 595–620 (2015)

    Article  Google Scholar 

  29. V.V. Laguta, A. Vedda, D.D. Martino, M. Martini, M. Nikl, E. Mihokova, Y. Usuki, Electron capture in PbWO4: Mo and PbWO4:Mo, La single crystals: ESR and TSL study. Phys. Rev. B 71(23), 235108–235108 (2005)

    Article  Google Scholar 

  30. X.L. Liu, K. Han, M. Gu, L.H. **ao, C. Ni, S.M. Huang, B. Liu, Effect ofcodopants on enhanced luminescence of GdTaO4:Eu3+ phosphors. SolidState Commun. 142, 680–684 (2007)

    Article  Google Scholar 

  31. C.W. Yeh, W.T. Chen, R.S. Liu, S.F. Hu, H.S. Sheu, J.M. Chen, H.T. Hintzen, Origin of thermal degradation of Sr2 – xSi5N8:Eux phosphors in air for light-emitting diodes. J. Am. Chem. Soc. 134(34), 14108–14117 (2012)

    Article  Google Scholar 

  32. K.S. Sohn, B. Lee, R.J. **e, N. Hirosaki, Rate-equation model for energy transfer between activators at different crystallographic sites in Sr2Si5N8:Eu2+. Opt. Lett. 34(21), 3427–3429 (2009)

    Article  Google Scholar 

  33. R.J. **e, N. Hirosaki, Y.Q. Li, T. Takeda, Photoluminescence of (Ba1–xEux)Si6N8O (0.005 ≤ x ≤ 0.2) phosphors. J. Lumin. 130, 266–269 (2010)

    Article  Google Scholar 

  34. [34]C. Wang, S. **n, X. Wang, Double substitution induced tunable photoluminescence in the Sr2Si5N8:Eu phosphor lattice. New J Chem. 39(9), 6958–6964 (2015)

    Article  Google Scholar 

  35. L. Zhichao, Z. Lei, C. Wenbo, F. **aotong, Y. **uxia, Q. Jianbei, X. Xuhui, Multiple anti-counterfeiting realized in NaBaScSi2O7 with a single activator of Eu2+. J. Mater. Chem. C. 6, 11137–11143 (2018)

  36. Z.J. Zhang, O.M. ten Kate, A. Delsing, E. van der Kolk, P.H.L. Notten, P. Dorenbos, J.T. Zhao, H.T. Hintzen, Photoluminescence properties and energy level locations of RE3+ (RE = Pr, Sm, Tb, Tb/Ce) in CaAlSiN3 phosphors. J. Mater. Chem. 22, 9813 (2012)

    Article  Google Scholar 

  37. C.R. Ronda, Luminescence: from theory to applications. Wiley, New York (2008)

    Google Scholar 

  38. S. Shigeo, M. William, Phosphor handbook. (1998)

  39. P. Dorenbos, Thermal quenching of Eu2+ 5d 4f luminescence in inorganic compounds. J. Phys-Condensed. 17(50), 8103–8111 (2005)

    Article  Google Scholar 

  40. C.L. Wang, Y.H. ***, Y. Lv, G.F. Ju, D. Liu, L. Chen, Z.Z. Li, Y.H. Hu, Trap distribution tailoring guided design of a super-long persistent phosphor Ba2SiO4:Eu2+, Ho3+ and photostimulable luminescence for optical information storage, J. Mater. Chem. C, 22, (2018)

  41. W.B. Im, N.N. Fellows, S.P. DenBaars, R. Seshadri, La1–x–0.025Ce0.025Sr2+xAl1–xSixO5 solid solutions as tunable yellow phosphors for solid state white lighting. J. Mater. Chem. 19, 1325–1330 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the National Natural Science Foundation of China (Nos. 11704043, 51702378) and the Special Foundation for theoretical physics Research Program of China (Nos. 11747113, 11747117).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chuang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Jiang, J., Zhu, G. et al. Optical and thermal quenching properties of Al-doped Ba1.98SiO4:0.02Eu2+ phosphor synthesized with different Si3N4/SiO2 ratio. J Mater Sci: Mater Electron 30, 4599–4606 (2019). https://doi.org/10.1007/s10854-019-00752-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-00752-z

Navigation