Log in

Insights into optoelectronic properties of anti-solvent treated perovskite films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The remarkable performance in perovskite solar cells over the past few years primarily stemmed from an improvement in perovskite film composition and morphology. Antisolvent treatment of perovskite films is one such widely adopted method where a solvent other than that used for precursor solution is introduced to facilitate rapid crystallization of perovskite crystals and to obtain a homogeneous pin-hole free film. Various reports are published recently to understand solvent extraction mechanism, electrical properties and the effect of antisolvent treatment of perovskite film on device performance and stability. Herein, we report some more insights on the charge carrier dynamics, crystallinity and more importantly, the change in energy levels of antisolvent treated perovskite films. The UV–vis absorption, photoluminescence, and photoelectron spectroscopy measurements revealed a downward shift in energy levels of MAPbI3 perovskite when treated with an antisolvent. The energy level shift favoured interfacial charge transfer and resulted in remarkable open-circuit voltage ~1.08 V and photoconversion efficiency 8.21% up from 0.61 V and 1.3% for a non-treated film, respectively for devices prepared at ambient conditions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. NERL, Journal (2015), http://www.nrel.gov/ncpv/images/efficiency_chart.jpg

  2. M.A. Green, K. Emery, Y. Hishikawa, W. Warta, E.D. Dunlop, Prog. Photovoltaics Res. Appl. 24, 3–11 (2016)

    Article  Google Scholar 

  3. F. Di Giacomo, A. Fakharuddin, R. Jose, T.M. Brown, Energy Environ. Sci. 9, 3007–3035 (2016)

    Article  Google Scholar 

  4. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643–647 (2012)

    Article  Google Scholar 

  5. H.S. Kim, C.R. Lee, J.H. Im, K.B. Lee, T. Moehl, A. Marchioro, S.J. Moon, R. Humphry-Baker, J.H. Yum, J.E. Moser, M. Gratzel, N.G. Park, Sci. Rep. 2, 591 (2012)

    Article  Google Scholar 

  6. N.-G. Park, M. Grätzel, T. Miyasaka, K. Zhu, K. Emery, Nat. Energy 1, 16152 (2016)

    Article  Google Scholar 

  7. H. Zhou, Q. Chen, G. Li, S. Luo, T.-B. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu, Y. Yang, Science 345, 542–546 (2014)

    Article  Google Scholar 

  8. C. Momblona, L. Gil-Escrig, E. Bandiello, E.M. Hutter, M. Sessolo, K. Lederer, J. Blochwitz-Nimoth, H.J. Bolink, Energy Environ. Sci. 9, 3456–3463 (2016)

    Article  Google Scholar 

  9. J.H. Heo, H.J. Han, D. Kim, T.K. Ahn, S.H. Im, Energy Environ. Sci. 8, 1602–1608 (2015)

    Article  Google Scholar 

  10. Y. Shao, Y. Yuan, J. Huang, Nat. Energy 1, 15001 (2016)

    Article  Google Scholar 

  11. M.H. Kumar, S. Dharani, W.L. Leong, P.P. Boix, R.R. Prabhakar, T. Baikie, C. Shi, H. Ding, R. Ramesh, M. Asta, M. Graetzel, S.G. Mhaisalkar, N. Mathews, Adv. Mater. 26, 7122–7127 (2014)

    Article  Google Scholar 

  12. F. Hao, C.C. Stoumpos, D.H. Cao, R.P.H. Chang, M.G. Kanatzidis, Nat. Photonics 8, 489–494 (2014)

    Article  Google Scholar 

  13. A. Fakharuddin, F. De Rossi, T.M. Watson, L. Schmidt-Mende, R. Jose, APL Mater. 4, 091505 (2016)

    Article  Google Scholar 

  14. M.A. Green, A. Ho-Baillie, H.J. Snaith, Nat. Photonics 8, 506–514 (2014)

    Article  Google Scholar 

  15. S. Brittman, G.W.P. Adhyaksa, E.C. Garnett, MRS Commun. 5, 7–26 (2015)

    Article  Google Scholar 

  16. A. Miyata, A. Mitioglu, P. Plochocka, O. Portugall, J.T.W. Wang, S.D. Stranks, H.J. Snaith, R.J. Nicholas, Nat. Phys. 11, 582–587 (2015)

    Article  Google Scholar 

  17. Z.H. Bakr, Q. Wali, A. Fakharuddin, L. Schmidt-Mende, T.M. Brown, R. Jose, Nano Energy 34, 271–305 (2017)

    Article  Google Scholar 

  18. A. Fakharuddin, L. Schmidt-Mende, G. Garcia-Belmonte, J. Rajan, I. Mora-Sero, Adv. Energy Mater. (2017)

  19. M. Liu, M.B. Johnston, H.J. Snaith, Nature 501, 395–398 (2013)

    Article  Google Scholar 

  20. J. Burschka, N. Pellet, S.-J. Moon, R. Humphry-Baker, P. Gao, M.K. Nazeeruddin, M. Gratzel, Nature 499, 316–319 (2013)

    Article  Google Scholar 

  21. H.-B. Kim, H. Choi, J. Jeong, S. Kim, B. Walker, S. Song, J.Y. Kim, Nanoscale 6, 6679–6683 (2014)

    Article  Google Scholar 

  22. K. Kara, D.A. Kara, C. Krbyk, M. Ersoz, O. Usluer, A.L. Briseno, M. Kus, RSC Adv. 6, 26606–26611 (2016)

    Article  Google Scholar 

  23. P.-W. Liang, C.-Y. Liao, C.-C. Chueh, F. Zuo, S.T. Williams, X.-K. **n, J. Lin, A.K.Y. Jen, Adv. Mater. 26, 3748–3754 (2014)

    Article  Google Scholar 

  24. H. Yu, F. Wang, F. **e, W. Li, J. Chen, N. Zhao, Adv. Funct. Mater. 24, 7102–7108 (2014)

    Google Scholar 

  25. B.-E. Cohen, S. Aharon, A. Dymshits, L. Etgar, J. Phys. Chem. C 120, 142–147 (2016)

    Article  Google Scholar 

  26. M. Li, X. Yan, Z. Kang, X. Liao, Y. Li, X. Zheng, P. Lin, J. Meng, Y. Zhang, ACS Appl. Mater. Interfaces 9, 7224–7231 (2017)

    Article  Google Scholar 

  27. S.S. Lim, W.K. Chong, A. Solanki, H.A. Dewi, S. Mhaisalkar, N. Mathews, T.C. Sum, Phys. Chem. Chem. Phys. 18, 27119–27123 (2016)

    Article  Google Scholar 

  28. S. Paek, P. Schouwink, E.N. Athanasopoulou, K.T. Cho, G. Grancini, Y. Lee, Y. Zhang, F. Stellacci, M.K. Nazeeruddin, P. Gao, Chem. Mater. (2017). doi:10.1021/acs.chemmater.6b05353

    Google Scholar 

  29. Y. Yu, S. Yang, L. Lei, Q. Cao, J. Shao, S. Zhang, Y. Liu, ACS Appl. Mater. Interfaces 9, 3667–3676 (2017)

    Article  Google Scholar 

  30. J. Zhang, G. Zhai, W. Gao, C. Zhang, Z. Shao, F. Mei, J. Zhang, Y. Yang, X. Liu, B. Xu, J. Mater. Chem. A 5, 4190–4198 (2017)

    Article  Google Scholar 

  31. J.-H. Im, I.-H. Jang, N. Pellet, M. Grätzel, N.-G. Park, Nat. Nano 9, 927–932 (2014)

    Article  Google Scholar 

  32. H. Hu, K.K. Wong, T. Kollek, F. Hanusch, S. Polarz, P. Docampo, L. Schmidt-Mende, Molecules 21, 542 (2016)

    Article  Google Scholar 

  33. A. Fakharuddin, F. Di Giacomo, I. Ahmed, Q. Wali, T.M. Brown, R. Jose, J. Power Sources 283, 61–67 (2015)

    Article  Google Scholar 

  34. A. Fakharuddin, F. Di Giacomo, A.L. Palma, F. Matteocci, I. Ahmed, S. Razza, A. D’Epifanio, S. Licoccia, J. Ismail, A. Di Carlo, T.M. Brown, R. Jose, ACS Nano 9, 8420–8429 (2015)

    Article  Google Scholar 

  35. S. De Wolf, J. Holovsky, S.J. Moon, P. Löper, B. Niesen, M. Ledinsky, F.J. Haug, J.H. Yum, C. Ballif, J. Phys. Chem. Lett. 5, 1035–1039 (2014)

    Article  Google Scholar 

  36. A.A. Zhumekenov, M.I. Saidaminov, M.A. Haque, E. Alarousu, S.P. Sarmah, B. Murali, I. Dursun, X.-H. Miao, A.L. Abdelhady, T. Wu, O.F. Mohammed, O.M. Bakr, ACS Energy Lett. 1, 32–37 (2016)

    Article  Google Scholar 

  37. A. Kahn, Mater. Horiz. 3, 7–10 (2016)

    Article  Google Scholar 

  38. J.-L. Bredas, Mater. Horiz. 1, 17–19 (2014)

    Article  Google Scholar 

  39. J.-Y. Jeng, Y.-F. Chiang, M.-H. Lee, S.-R. Peng, T.-F. Guo, P. Chen, T.-C. Wen, Adv. Mater. 25, 3727–3732 (2013)

    Article  Google Scholar 

  40. Z. Zhou, S. Pang, Z. Liu, H. Xu, G. Cui, J. Mater. Chem. A 3, 19205–19217 (2015)

    Article  Google Scholar 

Download references

Acknowledgements

The project is funded by KD Ph.D. scholarship, Ph.D. Nano Network grant and NorFab grant. A.N. acknowledges the support of Ege University Solar Energy Institute (Turkey) and University of Konstanz for facilitating the research stay. A.F. acknowledges Alexander von Humboldt Foundation for award of postdoctoral research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ceylan Zafer or Azhar Fakharuddin.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 771 KB)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nawaz, A., Erdinc, A.K., Gultekin, B. et al. Insights into optoelectronic properties of anti-solvent treated perovskite films. J Mater Sci: Mater Electron 28, 15630–15636 (2017). https://doi.org/10.1007/s10854-017-7451-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-017-7451-z

Navigation