Log in

Impact of solvent exposure on the structure and electronic properties of CH3NH3PbI3−xClx mixed halide perovskite films

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Organic semiconductor charge transport layers are important constituents of perovskite-based solar cells. To assess the suitability of potential solvents for the deposition of the charge transport layers on perovskite surfaces, the effect of solvent exposure on the properties of methyl ammonium lead mixed halide CH3NH3PbI3–xClx films is investigated by grazing incidence X-ray diffraction, atomic force microscopy, ultraviolet–visible absorption spectroscopy, and photoelectron spectroscopy. While exposure to dimethylformamide (DMF) and water instantly dissolves the perovskite film, exposure to chlorobenzene (CB) and chloroform (CF) does not detectably affect the perovskite bulk properties. However, the electronic properties of the perovskite surface are substantially modified by the solvent exposure, resulting in an increased work function and less n-type appearance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (United Kingdom)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. A. Kojima, K. Teshima, Y. Shirai, T. Miyasaka, J. Am. Chem. Soc. 131, 6050 (2009)

    Article  Google Scholar 

  2. A.D. Jodlowski, C. Roldán-Carmona, G. Grancini, M. Salado, M. Ralaiarisoa, S. Ahmad, N. Koch, L. Camacho, G. de Miguel, M.K. Nazeeruddin, Nat. Energy 2, 972 (2017)

    Article  ADS  Google Scholar 

  3. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S.M. Zakeeruddin, J.-P. Correa-Baena, W.R. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Science 354, 206–209 (2016)

    Article  ADS  Google Scholar 

  4. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M.K. Nazeeruddin, S.M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt, M. Grätzel, Energy Environ. Sci. 2016, 9 (1989)

    Google Scholar 

  5. L.K. Ono, S.R. Raga, M. Remeika, A.J. Winchester, A. Gabe, Y. Qi, J. Mater. Chem. A 3, 15451 (2015)

    Article  Google Scholar 

  6. O. Malinkiewicz, A. Yella, Y.H. Lee, G.M. Espallargas, M. Graetzel, M.K. Nazeeruddin, H.J. Bolink, Nat. Photonics 8, 128 (2014)

    Article  ADS  Google Scholar 

  7. M. Kaltenbrunner, G. Adam, E.D. Głowacki, M. Drack, R. Schwödiauer, L. Leonat, D.H. Apaydin, H. Groiss, M.C. Scharber, M.S. White, N.S. Sariciftci, S. Bauer, Nat. Mater. 14, 1032 (2015)

    Article  ADS  Google Scholar 

  8. G. Giorgi, K. Yamashita, J. Mater. Chem. A 3, 8981 (2015)

    Article  Google Scholar 

  9. J.M. Ball, M.M. Lee, A. Hey, H.J. Snaith, Energy Environ. Sci. 6, 1739 (2013)

    Article  Google Scholar 

  10. L. Etgar, P. Gao, Z. Xue, Q. Peng, A.K. Chandiran, B. Liu, M.K. Nazeeruddin, M. Grätzel, J. Am. Chem. Soc. 134, 17396 (2012)

    Article  Google Scholar 

  11. M.M. Lee, J. Teuscher, T. Miyasaka, T.N. Murakami, H.J. Snaith, Science 338, 643–647 (2012)

    Article  ADS  Google Scholar 

  12. G. Giorgi, J.-I. Fujisawa, H. Segawa, K. Yamashita, J. Phys. Chem. Lett. 4, 4213 (2013)

    Article  Google Scholar 

  13. W. Tress, N. Marinova, O. Inganäs, M. K. Nazeeruddin, S. M. Zakeeruddin, M. Graetzel, in 2014 IEEE 40th Photovoltaic Specialist Conference (PVSC) (2014), pp. 1563–1566

  14. E.J. Juarez-Perez, M. Wuβler, F. Fabregat-Santiago, K. Lakus-Wollny, E. Mankel, T. Mayer, W. Jaegermann, I. Mora-Sero, J. Phys. Chem. Lett. 5, 680 (2014)

    Article  Google Scholar 

  15. K.W. Tan, D.T. Moore, M. Saliba, H. Sai, L.A. Estroff, T. Hanrath, H.J. Snaith, U. Wiesner, ACS Nano 8, 4730 (2014)

    Article  Google Scholar 

  16. M. Ralaiarisoa, Y. Busby, J. Frisch, I. Salzmann, J.-J. Pireaux, N. Koch, Phys. Chem. Chem. Phys. 19, 828 (2016)

    Article  Google Scholar 

  17. G. Niu, X. Guo, L. Wang, J. Mater. Chem. A 3, 8970 (2015)

    Article  Google Scholar 

  18. M. Ralaiarisoa, I. Salzmann, F.-S. Zu, N. Koch, Adv. Electron. Mater. 4, 1800307 (2018)

    Article  Google Scholar 

  19. B. Philippe, B.-W. Park, R. Lindblad, J. Oscarsson, S. Ahmadi, E.M.J. Johansson, H. Rensmo, Chem. Mater. 27, 1720 (2015)

    Article  Google Scholar 

  20. A.M.A. Leguy, Y. Hu, M. Campoy-Quiles, M.I. Alonso, O.J. Weber, P. Azarhoosh, M. van Schilfgaarde, M.T. Weller, T. Bein, J. Nelson, P. Docampo, P.R.F. Barnes, Chem. Mater. 27, 3397 (2015)

    Article  Google Scholar 

  21. C. Reichardt, Chem. Rev. 94, 2319 (1994)

    Article  Google Scholar 

Download references

Acknowledgements

IS acknowledges the support of the Natural Sciences and Engineering Research Council of Canada (NSERC), [funding reference number RGPIN-2018-05092] and by Concordia University. MR and NK acknowledge support by the Helmholtz-Israel International Research School on Hybrid Integrated Systems for Conversion of Solar Energy (HI-SCORE). The authors thank Daniel Többens (HZB) for experimental support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norbert Koch.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ralaiarisoa, M., Rodríguez, Y., Salzmann, I. et al. Impact of solvent exposure on the structure and electronic properties of CH3NH3PbI3−xClx mixed halide perovskite films. Appl. Phys. A 125, 470 (2019). https://doi.org/10.1007/s00339-019-2757-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-019-2757-8

Navigation