Log in

Effect of solution concentration on surface morphology, optical properties and solar light response of ZnO thin films

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

The effects of zinc nitrate solution concentrations on the crystal structures, surface morphologies and optical properties of ZnO thin films were examined. X-ray diffraction patterns and scanning electron microscopy images indicated that all the samples exhibited the hexagonal structure and the morphologies of the thin films changed from 1D nanorods to 2D nanosheets with the increasing of solution concentration. The thin film grown in the 0.075 M solution presents the 3D network nanostructure, which was composed of many very thin 2D ZnO nanosheets, and possesses the largest first LO phonon mode, optical band gap, ratio for the intensity of deep level emission to that of UV emission. The results indicated that the optical properties of the ZnO thin films were affected by the solution concentration. Finally, the as-deposited ZnO thin film was used to generate a photocurrent and as a photocatalyst. Observations showed that the thin film grown in the 0.075 M solution exhibits the largest photocurrent density and degradation rate constant per unit area. The formation mechanism of the enhanced photoresponse and photocatalytic performance for the ZnO thin film has been investigated in detail.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. C. Soci, A. Zhang, B. **ang, S.A. Dayeh, D.P.R. Aplin, J. Park, X.Y. Bao, Y.H. Lo, D. Wang, ZnO nanowire UV photodetectors with high internal gain. Nano Lett. 7, 1003–1009 (2007)

    Article  Google Scholar 

  2. J. Wang, Y. **a, Y. Dong, R.S. Chen, L. **ang, S. Komarneni, Defect-rich ZnO nanosheets of high surface area as an efficient visible-light photocatalyst. Appl. Catal. B Environ. 192, 8–16 (2016)

    Article  Google Scholar 

  3. W.Z. Wang, B.Q. Zeng, J. Yang, B. Poudel, J.Y. Huang, M.J. Naughton, Z.F. Ren, Aligned ultralong ZnO nanobelts and their enhanced field emission. Adv. Mater. 18, 3275–3278 (2006)

    Article  Google Scholar 

  4. Q. Wan, Q.H. Li, Y.J. Chen, T.H. Wang, X.L. He, J.P. Li, C.L. Lin, Fabrication and ethanol sensing characteristics of ZnO nanowire gas sensors. Appl. Phys. Lett. 84, 3654–3656 (2004)

    Article  Google Scholar 

  5. J.H. Lim, C.K. Kang, K.K. Kim, I.K. Park, D.K. Hwang, S.J. Park, UV electroluminescence emission from ZnO light-emitting diodes grown by high-temperature radiofrequency sputtering. Adv. Mater. 18, 2720–2724 (2006)

    Article  Google Scholar 

  6. K.S. Leschkies, R. Divakar, J. Basu, E. Enache-Pommer, J.E. Boercker, C.B. Carter, U.R. Kortshagen, D.J. Norris, E.S. Aydil, Photosensitization of ZnO nanowires with CdSe quantum dots for photovoltaic devices. Nano Lett. 7, 1793–1798 (2007)

    Article  Google Scholar 

  7. X. Bai, L. Wang, R. Zong, Y. Lv, Y. Sun, Y. Zhu, Performance enhancement of ZnO photocatalyst via synergic effect of surface oxygen defect and graphene hybridization. Langmuir 29, 3097–3105 (2013)

    Article  Google Scholar 

  8. B. Yang, J. Chen, L. Cui, W. Liu, Enhanced photocurrent of a ZnO nanorod array sensitized with graphene quantum dots. RSC Adv. 5, 59204–59207 (2015)

    Article  Google Scholar 

  9. C. Wu, Q. Huang, Synthesis of Na-doped ZnO nanowires and their photocatalytic properties. J. Lumin. 130, 2136–2141 (2010)

    Article  Google Scholar 

  10. N. Huang, J. Shu, Z. Wang, M. Chen, C. Ren, W. Zhang, One-step pyrolytic synthesis of ZnO nanorods with enhanced photocatalytic activity and high photostability under visible light and UV light irradiation. J. Alloy. Compd. 648, 919–929 (2015)

    Article  Google Scholar 

  11. J. Lv, Y. Sun, L. Cao, M. Zhao, F. Shang, S. Mao, Y. Jiang, J. Xu, F. Wang, Z. Zhou, Effect of reaction temperature on surface morphology and photoelectric properties of ZnO grown by hydrothermal method in mixed solvent. J. Mater. Sci.: Mater. Electron. 26, 5518–5523 (2015)

    Google Scholar 

  12. Y.L. **e, J. Yuan, P. Song, S.Q. Hu, Growth of ZnO nanorods and nanosheets by electrodeposition and their applications in dye-sensitized solar cells. J. Mater. Sci.: Mater. Electron. 26, 3868–3873 (2015)

    Google Scholar 

  13. T. Wang, Y. Liu, G. Li, Z. Sun, J. Lu, B. Liu, M. Wu, Synthesis of highly-transparent Al-doped ZnO porous network thin films. CrystEngComm 13, 2661–2666 (2011)

    Article  Google Scholar 

  14. G. Yao, M. Zhang, J. Lv, K. Xu, S. Shi, Z. Gong, J. Tao, X. Jiang, L. Yang, Y. Cheng, Effects of electrodeposition electrolyte concentration on microstructure, optical properties and wettability of ZnO nanorods. J. Electrochem. Soc. 162, 2008–2012 (2015)

    Article  Google Scholar 

  15. D. Pradhan, M. Kumar, Y. Ando, K.T. Leung, Fabrication of ZnO nanospikes and nanopillars on ITO glass by templateless seed-layer-free electrodeposition and their field-emission properties. ACS Appl. Mater. Interfaces 1, 789–796 (2009)

    Article  Google Scholar 

  16. D. Pradhan, K.T. Leung, Controlled growth of two-dimensional and one-dimensional ZnO nanostructures on indium tin oxide coated glass by direct electrodeposition. Langmuir 24, 9707–9716 (2008)

    Article  Google Scholar 

  17. D.P. And, K.T. Leung, Vertical growth of two-dimensional zinc oxide nanostructures on ito-coated glass: effects of deposition temperature and deposition time. J. Phys. Chem. C 112, 1357–1364 (2008)

    Article  Google Scholar 

  18. J. Qiu, M. Guo, X. Wang, Electrodeposition of hierarchical ZnO nanorod-nanosheet structures and their applications in dye-sensitized solar cells. ACS Appl. Mater. Interfaces 3, 2358–2367 (2011)

    Article  Google Scholar 

  19. H.M. Cheng, H.C. Hsu, Y.K. Tseng, L.J. Lin, W.F. Hsieh, Raman scattering and efficient UV photoluminescence from well-aligned ZnO nanowires epitaxially grown on GaN buffer layer. J. Phys. Chem. B 109, 8749–8754 (2005)

    Article  Google Scholar 

  20. W. Zhijian, Z. Haiming, Z. Ligong, Y. **shan, Y. Shenggang, W. Chunyan, Low-temperature synthesis of ZnO nanoparticles by solid-state pyrolytic reaction. Nanotechnology 14, 11 (2003)

    Article  Google Scholar 

  21. J.F. Scott, UV resonant Raman scattering in ZnO. Phys. Rev. B: Condens. Matter 2, 1209–1211 (1970)

    Article  Google Scholar 

  22. R. Zhang, P.G. Yin, N. Wang, L. Guo, Photoluminescence and Raman scattering of ZnO nanorods. Solid State Sci. 11, 865–869 (2009)

    Article  Google Scholar 

  23. K.A. Alim, V.A. Fonoberov, A.A. Balandin, Origin of the optical phonon frequency shifts in ZnO quantum dots. Appl. Phys. Lett. 86, 053103 (2005)

    Article  Google Scholar 

  24. B. Kumar, H. Gong, S.Y. Chow, S. Tripathy, Y. Hua, Photoluminescence and multiphonon resonant Raman scattering in low-temperature grown ZnO nanostructures. Appl. Phys. Lett. 89, 071922 (2006)

    Article  Google Scholar 

  25. J. Lv, J. Xu, M. Zhao, Y. Sun, Y. Jiang, G. He, M. Zhang, Z. Sun, Microstructure, surface morphology and optical properties of Na x Cu y Zn1−xy O thin films. J. Mater. Sci.: Mater. Electron. 27, 4019–4025 (2016)

    Google Scholar 

  26. H. Zhang, S. **, G. Duan, J. Wang, W. Cai, Controllable synthesis of well-aligned ZnO nanorod arrays on varying substrates via rapid electrodeposition. J. Mater. Sci. Technol. 30, 1118–1123 (2014)

    Article  Google Scholar 

  27. H.S. Kang, J.S. Kang, J.W. Kim, S.Y. Lee, Annealing effect on the property of ultraviolet and green emissions of ZnO thin films. J. Appl. Phys. 95, 1246–1250 (2004)

    Article  Google Scholar 

  28. Y.M. Lu, X.P. Li, S.C. Su, P.J. Cao, F. Jia, S. Han, Y.X. Zeng, W.J. Liu, D.L. Zhu, The effect of O2 partial pressure on the photoluminescence of ZnO thin films grown by pulsed laser deposition. J. Lumin. 152, 254–257 (2014)

    Article  Google Scholar 

  29. Z. Tan, Z.H. Feng, L.P. Yu, Preparation and characterization of bowl-like porous ZnO film by electrodeposition using two-dimensional photonic crystal template. J. Mater. Sci.: Mater. Electron. 24, 2630–2635 (2013)

    Google Scholar 

  30. J.W. Tringe, H.W. Levie, S.K. Mccall, N.E. Teslich, M.A. Wall, C.A. Orme, M.J. Matthews, Enhanced Raman scattering and nonlinear conductivity in Ag-doped hollow ZnO microspheres. Appl. Phys. A 109, 15–23 (2012)

    Article  Google Scholar 

  31. X.L. Wu, G.G. Siu, C.L. Fu, H.C. Ong, Photoluminescence and cathodoluminescence studies of stoichiometric and oxygen-deficient ZnO films. Appl. Phys. Lett. 78, 2285–2287 (2001)

    Article  Google Scholar 

  32. X. Liu, F. Li, Y. Wang, H. **, H. Wang, Z. Li, Surface-enhanced Raman scattering and photocurrent multiplication phenomenon of ZnO/Ag nanoarrays. Mater. Lett. 94, 19–22 (2013)

    Article  Google Scholar 

  33. J. Tian, S. Liu, H. Li, L. Wang, Y. Zhang, Y. Luo, A.M. Asiri, A.O. Al-Youbi, X. Sun, One-step preparation of ZnO nanoparticle-decorated reduced graphene oxide composites and their application to photocurrent generation. RSC Adv. 2, 1318–1321 (2012)

    Article  Google Scholar 

  34. M. Azarang, A. Shuhaimi, R. Yousefi, M. Sookhakian, Effects of graphene oxide concentration on optical properties of ZnO/RGO nanocomposites and their application to photocurrent generation. J. Appl. Phys. 116, 9–19 (2014)

    Article  Google Scholar 

  35. Q.P. Luo, X.Y. Yu, B.X. Lei, H.Y. Chen, D.B. Kuang, C.Y. Su, Reduced graphene oxide-hierarchical ZnO hollow sphere composites with enhanced photocurrent and photocatalytic activity. J. Phys. Chem. C 116, 8111–8117 (2012)

    Article  Google Scholar 

  36. A. Umar, R. Kumar, G. Kumar, H. Algarni, S.H. Kim, Effect of annealing temperature on the properties and photocatalytic efficiencies of ZnO nanoparticles. J. Alloy. Compd. 648, 46–52 (2015)

    Article  Google Scholar 

  37. M. Yu, H. Zhang, Y. Shuai, J. Zheng, X. Zhu, Preparation of flower-like ZnO architectures assembled with nanosheets for enhanced photocatalytic activity. J. Colloid Interface Sci. 462, 9–18 (2015)

    Google Scholar 

  38. X. Hou, L. Wang, F. Li, G. He, L. Li, Controlled loading of gold nanoparticles on ZnO nanorods and their high photocatalytic activity. Mater. Lett. 159, 502–505 (2015)

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by National Natural Science Foundation of China (Nos. 51102072, 51472003, 51272001, 21201052, 51572002), Natural Science Foundation of Anhui Higher Education Institution of China (Nos. KJ2015ZD32, KJ2012Z336, KJ2013A224), Fund of Hefei Normal University (Nos. 2015QN05, 2016CXYZB001).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianguo Lv.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, M., Cheng, Y., Lv, J. et al. Effect of solution concentration on surface morphology, optical properties and solar light response of ZnO thin films. J Mater Sci: Mater Electron 28, 2731–2738 (2017). https://doi.org/10.1007/s10854-016-5852-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-016-5852-z

Keywords

Navigation