Log in

Linear evolution of the γ′-(Ni, Cu)3Al phase composition in Cu-based high-temperature alloys

  • Metals & corrosion
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The ordered γ′-(Ni, Cu)3Al is a crucial strengthening phase that improves the high-temperature resistance of Cu-based alloys, so it is important to predict the kinetic evolution of the composition and microstructure of the phase for high-temperature applications. Herein, this paper discusses the temporal evolution of the composition and coarsening of the γ′ phase in a model ternary Cu50Ni37.5Al12.5 (at%) alloy during isothermal aging at 600, 700, 800, and 900 °C for 1–36 h. It is found that the γ′ phase composition evolves linearly toward a binary γ′ phase as the aging time increases during the process of aging at 800 and 900 °C, which cannot be predicted by the ternary phase diagrams alone. Meanwhile, through the utilization of the aforementioned linear law, the γ phase composition can be predicted at a given temperature within the alloy by determining the volume fraction of the γ′ phase. Additionally, the activation energy for coarsening decreases, and the coarsening rate of the γ′ phase increases owing to the higher diffusion rate of Cu at high temperatures. The addition of microalloying elements with strong enthalpic interactions is beneficial for reinforcing the structural stability of the γ′ phase. This work provides a simple method for the compositional analysis and performance prediction of Cu–Ni–Al alloys at elevated temperatures and sheds light on the subsequent compositional design and optimization of Cu-based high-temperature alloys.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

Data availability

Data will be made available on request.

References

  1. Zhao P, Zhu H, Hou K et al (2023) Temperature dependence of deformation mechanisms of a new Ni-based superalloy and high-temperature property optimization. J Mater Res Technol 27:1214–1222. https://doi.org/10.1016/j.jmrt.2023.09.297

    Article  CAS  Google Scholar 

  2. Sharma A, Dixit S, Baler N, Agrawal P, Makineni SK, Chattopadhyay K (2022) Impact of boron as an alloying addition on the microstructure, thermo-physical properties and creep resistance of a tungsten-free Co-base γ/γ′ superalloy. Mater Sci Eng A 855:143899. https://doi.org/10.1016/j.msea.2022.143899

    Article  CAS  Google Scholar 

  3. Li ZM, Li XN, Hu YL et al (2021) Cuboidal γ’ phase coherent precipitation-strengthened Cu–Ni–Al alloys with high softening temperature. Acta Mater 203:116458. https://doi.org/10.1016/j.actamat.2020.10.076

    Article  CAS  Google Scholar 

  4. Li ZM, Hu YL, Li XN et al (2023) A promising high temperature self-lubricating Cu-based superalloy with coherent cuboidal L12-γʹ phases. Compos Part B- Eng 265:110965. https://doi.org/10.1016/j.compositesb.2023.110965

    Article  CAS  Google Scholar 

  5. Semboshi S, Hariki R, Shuto T, Hyodo H, Kaneno Y, Masahashi N (2021) Age-induced precipitating and strengthening behaviors in a Cu–Ni–Al alloy. Metall Mater Trans A 52(11):4934–4945. https://doi.org/10.1007/s11661-021-06435-x

    Article  CAS  Google Scholar 

  6. Semboshi S, Anno T, Kaneno Y (2022) Phase diagram of the Cu-Ni3Al pseudo-binary system. J Alloys Compd 921:166124. https://doi.org/10.1016/j.jallcom.2022.166124

    Article  CAS  Google Scholar 

  7. Kainuma R, Ise M, Jia CC, Ohtani H, Ishida K (1996) Phase equilibria and microstructural control in the Ni–Co–Al system. Intermetallics 4:S151–S158. https://doi.org/10.1016/0966-9795(96)00034-9

    Article  CAS  Google Scholar 

  8. Grushko B, Kowalski W, Pavlyuchkov D, Przepiórzyński B, Surowiec M (2008) A contribution to the Al–Ni–Cr phase diagram. J Alloys Compd 460:299–304. https://doi.org/10.1016/j.jallcom.2007.06.044

    Article  CAS  Google Scholar 

  9. Liu D, Zhang L, Du Y, ** Z (2015) Simulation of atomic mobilities, diffusion coefficients and diffusion paths in bcc_A2 and bcc_B2 phases of the Al–Ni–Fe system. J Alloys Compd 634:148–155. https://doi.org/10.1016/j.jallcom.2015.01.267

    Article  CAS  Google Scholar 

  10. Zhou SH, Wang Y, Chen LQ, Liu ZK, Napolitano RE (2014) Solution-based thermodynamic modeling of the Ni–Al–Mo system using first-principles calculations. Calphad 46:124–133. https://doi.org/10.1016/j.calphad.2014.03.002

    Article  CAS  Google Scholar 

  11. Du Y, Chang YA, Gong W et al (2003) Thermodynamic properties of the Al–Nb–Ni system. Intermetallics 11:995–1013. https://doi.org/10.1016/s0966-9795(03)00123-7

    Article  CAS  Google Scholar 

  12. Peng H, Xu S, Wang J, Wu C, Tu H, Su X (2017) The 600 °C isothermal section of the Al–Ni–Zn ternary system. J Phase Equilib Diffus 38(2):151–159. https://doi.org/10.1007/s11669-017-0528-9

    Article  CAS  Google Scholar 

  13. Chen Q, Huang LH, Liu HS, Zheng F, ** ZP (2013) Isothermal sections of Al–Ni–Zr ternary system at 850 and 1050 °C. J Phase Equilib Diffus 34(5):390–402. https://doi.org/10.1007/s11669-013-0248-8

    Article  CAS  Google Scholar 

  14. Zhang C, Zhu J, Yang Y et al (2008) Thermodynamic modeling and experimental investigation of the Ni-rich corner of the Ni–Al–Hf system. Intermetallics 16(2):139–147. https://doi.org/10.1016/j.intermet.2007.08.009

    Article  CAS  Google Scholar 

  15. Popovič J, Brož P, Buršík J (2008) Microstructure and phase equilibria in the Ni–Al–W system. Intermetallics 16(7):884–888. https://doi.org/10.1016/j.intermet.2008.04.003

    Article  CAS  Google Scholar 

  16. Zhang H, Du Y, Hu B et al (2023) Thermodynamic modeling of the Al–Co–W, Al–Ni–Ta and Co–Ni–W ternary systems. Calphad 81:102547. https://doi.org/10.1016/j.calphad.2023.102547

    Article  CAS  Google Scholar 

  17. Jain M, Gupta SP (2003) Formation of intermetallic compounds in the Ni-Al-Si ternary system. Mater Charact 51(4):243–257. https://doi.org/10.1016/j.matchar.2003.12.002

    Article  CAS  Google Scholar 

  18. Sheu HH, Hsiung LC, Sheu JR (2009) Synthesis of multiphase intermetallic compounds by mechanical alloying in Ni–Al–Ti system. J Alloys Compd 469(1–2):483–487. https://doi.org/10.1016/j.jallcom.2008.02.019

    Article  CAS  Google Scholar 

  19. Zapolsky H, Pareige C, Marteau L, Blavette D, Chen LQ (2001) Atom probe analyses and numerical calculation of ternary phase diagram in Ni–Al–V system. Calphad 25(1):125–134. https://doi.org/10.1016/S0364-5916(01)00035-9

    Article  CAS  Google Scholar 

  20. Wang W, Chen HL, Larsson H, Mao H (2019) Thermodynamic constitution of the Al-Cu-Ni system modeled by CALPHAD and ab initio methodology for designing high entropy alloys. Calphad 65:346–369. https://doi.org/10.1016/j.calphad.2019.03.011

    Article  CAS  Google Scholar 

  21. Wagner C (2010) Theorie der alterung von niederschlägen durch umlösen (ostwald-reifung). Z Elektrochem 65(7–8):581–591. https://doi.org/10.1002/bbpc.19610650704

    Article  Google Scholar 

  22. Ardell AJ, Ozolins V (2005) Trans-interface diffusion-controlled coarsening. Nature Mater 4(4):309–316. https://doi.org/10.1038/nmat1340

    Article  CAS  Google Scholar 

  23. Zhang J, Liu L, Huang T et al (2021) Coarsening kinetics of γ′ precipitates in a Re-containing Ni-based single crystal superalloy during long-term aging. J Mater Sci Technol 62:1–10. https://doi.org/10.1016/j.jmst.2020.05.034

    Article  CAS  Google Scholar 

  24. Sun W (2007) Kinetics for coarsening co-controlled by diffusion and a reversible interface reaction. Acta Mater 55(1):313–320. https://doi.org/10.1016/j.actamat.2006.07.045

    Article  CAS  Google Scholar 

  25. Plotnikov EY, Mao Z, Baik SI et al (2019) A correlative four-dimensional study of phase-separation at the subnanoscale to nanoscale of a NiAl alloy. Acta Mater 171:306–333. https://doi.org/10.1016/j.actamat.2019.03.016

    Article  CAS  Google Scholar 

  26. Philippe T, Voorhees PW (2013) Ostwald ripening in multicomponent alloys. Acta Mater 61(11):4237–4244. https://doi.org/10.1016/j.actamat.2013.03.049

    Article  CAS  Google Scholar 

  27. Ardell AJ, Nicholson RB (2007) The coarsening of γ′ in Ni–Al alloys. J Phys Chem Solids 27:1793–1804. https://doi.org/10.1016/0022-3697(66)90110-7

    Article  Google Scholar 

  28. Murray JL (1992) ASM handbook: alloy phase diagrams. ASM International, USA

    Google Scholar 

  29. Fu CL, Painter GS (1997) Point defects and the binding energies of boron near defect sites in Ni3Al: a first-principles investigation. Acta mater 45(2):481–488. https://doi.org/10.1016/S1359-6454(96)00208-X

    Article  CAS  Google Scholar 

  30. Kozlov EV, Fedorishcheva MV, Nikonenko EL, Koneva NA (2008) Bull Russ Acad Sci Phys 72(10):1311–1314. https://doi.org/10.3103/s106287380810002x

    Article  Google Scholar 

  31. Wagner C, Schottky W (1930) Theory of regular mixed phases. Z Physik Chem B 11:163–210

    CAS  Google Scholar 

  32. Korzhavyi PA, Ruban AV, Lozovoi AY, Vekilov YK, Abrikosov IA, Johansson B (2000) Constitutional and thermal point defects in B2 NiAl. Phys Rev B 61:6003–6018. https://doi.org/10.1103/PhysRevB.61.6003

    Article  CAS  Google Scholar 

  33. Fu CL, Zou J (1996) Site preference of ternary alloying additions in FeAl and NiAl by first-principles calculations. Acta Mater 44:1471–1478. https://doi.org/10.1016/1359-6454(95)00297-9

    Article  CAS  Google Scholar 

  34. Jiang C, Sordelet DJ, Gleeson B (2006) Site preference of ternary alloying elements in Ni3Al: a first-principles study. Acta Mater 54(4):1147–1154. https://doi.org/10.1016/j.actamat.2005.10.039

    Article  CAS  Google Scholar 

  35. Ruban AV, Popov VA, Portnoi VK, Bogdanov VI (2013) First-principles study of point defects in Ni3Al. Philos Mag 94(1):20–34. https://doi.org/10.1080/14786435.2013.838647

    Article  CAS  Google Scholar 

  36. Kim DE, Shang SL, Liu ZK (2010) Effects of alloying elements on elastic properties of Ni3Al by first-principles calculations. Intermetallics 18(6):1163–1171. https://doi.org/10.1016/j.intermet.2010.02.024

    Article  CAS  Google Scholar 

  37. Wu Q, Li S (2012) Alloying element additions to Ni3Al: site preferences and effects on elastic properties from first-principles calculations. Comput Mater Sci 53(1):436–443. https://doi.org/10.1016/j.commatsci.2011.09.016

    Article  CAS  Google Scholar 

  38. Jiang C, Gleeson B (2006) Site preference of transition metal elements in Ni3Al. Scr Mater 55(5):433–436. https://doi.org/10.1016/j.scriptamat.2006.05.016

    Article  CAS  Google Scholar 

  39. Ruban AV, Skriver HL (1997) Calculated site substitution in ternary γ′-Ni3Al: Temperature and composition effects. Phys Rev B 55:856–874. https://doi.org/10.1103/PhysRevB.55.856

    Article  CAS  Google Scholar 

  40. Sudbrack CK, Yoon KE, Noebe RD, Seidman DN (2006) Temporal evolution of the nanostructure and phase compositions in a model Ni–Al–Cr alloy. Acta Mater 54:3199–3210. https://doi.org/10.1016/j.actamat.2006.03.015

    Article  CAS  Google Scholar 

  41. Campbell FC (2012) Phase diagrams-understanding the basics. ASM International, USA

    Book  Google Scholar 

Download references

Acknowledgements

We would like to gratefully acknowledge the financial support of the National Natural Science Foundation of China (Grant No.: 52071052).

Author information

Authors and Affiliations

Authors

Contributions

Yinglin Hu contributed to writing—original draft, data curation, investigation, and formal analysis; **aona Li contributed to conceptualization, methodology, formal analysis, and supervision; Chengwen Wang, Yuandi Hou, Min Li, Shuyuan Xue, and Shuaixin Zhang contributed to writing—review and editing and formal analysis; Chuang Dong contributed to conceptualization and writing—review and editing; and Zhumin Li and Yuehong Zheng contributed to writing—review and editing.

Corresponding authors

Correspondence to **aona Li or Chuang Dong.

Additional information

Handling Editor: Nima Haghdadi.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 358 KB)

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Li, X., Wang, C. et al. Linear evolution of the γ′-(Ni, Cu)3Al phase composition in Cu-based high-temperature alloys. J Mater Sci (2024). https://doi.org/10.1007/s10853-024-09855-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10853-024-09855-3

Navigation