Log in

Modeling the solar absorption performance of Copper@Carbon core–shell nanoparticles

  • Computation & theory
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The working fluid is a critical component in direct absorption solar collectors. Nanoparticle (NP) suspensions can be used as efficient solar absorption media. In this work, Cu@C core–shell NPs were designed to enhance the solar absorption performance by the coupled effect of the local surface plasmon resonance of the Cu core and the strong intrinsic absorption of the C shell. Results showed that the core radius (rc) and shell thickness (ts) had significant effects on the optical properties of Cu@C NPs. The largest absorption power per unit volume of single Cu@C NP was achieved at rc − ts = 25–4 nm. Taking into account the multi-scattering effect in the NP suspensions, the maximum solar absorption efficiency of Cu@C NP suspensions was obtained as 95.6% at rc − ts = 25–14 nm when the volume fraction fv = 100 ppm and height h = 3 mm. These results indicate that the scattering effect is significant to evaluate the solar absorption performance of NP suspensions and the core–shell size parameters should be considered cautiously for the solar thermal conversion applications.

Graphical Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (France)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Nagar S, Sharma K (2021) Modern solar systems driven by nanoparticles-based fatty acids and paraffin wax phase change materials. J Mater Sci 56:4941–4966. https://doi.org/10.1007/s10853-020-05575-6

    Article  CAS  Google Scholar 

  2. Pang YS, Zhang JJ, Ma RM, Qu ZG, Lee E, Luo TF (2020) Solar-thermal water evaporation: a review. ACS Energy Lett 5(2):437–456. https://doi.org/10.1021/acsenergylett.9b02611

    Article  CAS  Google Scholar 

  3. Ren HY, Tang M, Guan BL, et al (2017) Hierarchical graphene foam for efficient omnidirectional solar-thermal energy conversion. Adv Mater 29(38): 1702590.1–1702590.7. Doi:https://doi.org/10.1002/adma.201702590.

  4. Mahian O, Kolsi L, Amani M et al (2019) Recent advances in modeling and simulation of nanofluid flows-Part II: applications. Phys Rep 791:1–48. https://doi.org/10.1016/j.physrep.2018.11.004

    Article  CAS  Google Scholar 

  5. Baffou G, Quidant R (2012) Thermo-plasmonics: using metallic nanostructures as nano-sources of heat. Laser Photon Rev 7(2):171–187. https://doi.org/10.1002/lpor.201200003

    Article  CAS  Google Scholar 

  6. Maier SA (2007) Plasmonics: fundamentals and applications. Springer, New York

    Book  Google Scholar 

  7. Wang F, Shen YR (2006) General properties of local plasmons in metal nanostructures. Phys Rev Lett 97(20):206806.1–206806.4. Doi:https://doi.org/10.1103/PhysRevLett.97.206806.

  8. Chen MJ, He YR, Huang J, Zhu JQ (2016) Synthesis and solar photo-thermal conversion of Au, Ag, and Au-Ag blended plasmonic nanoparticles. Energy Conv Manag 127:293–300. https://doi.org/10.1016/j.enconman.2016.09.015

    Article  CAS  Google Scholar 

  9. Qi C, Luo T, Liu M, Fan F, Yan YY (2019) Experimental study on the flow and heat transfer characteristics of nanofluids in double-tube heat exchangers based on thermal efficiency assessment. Energy Conv Manag 197:111877.1–111877.27. Doi:https://doi.org/10.1016/j.enconman.2019.111877.

  10. Wang CY, Zhao JL, Du XH et al (2021) Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: a review. J Mater Sci 56:2856–2878. https://doi.org/10.1007/s10853-020-05493-7

    Article  CAS  Google Scholar 

  11. Qi C, Li KA, Li CY, Shang BC, Yan YY (2020) Experimental study on thermal efficiency improvement using nanofluids in heat sink with heated circular cylinder. Int Commun Heat Mass Transf 114:104589.1–104589.21. Doi:https://doi.org/10.1016/j.icheatmasstransfer.2020.104589.

  12. Chen MJ, He YR, Wang XZ, Hu YW (2018) Numerically investigating the optical properties of plasmonic metallic nanoparticles for effective solar absorption and heating. Sol Energy 161:17–24. https://doi.org/10.1016/j.solener.2017.12.032

    Article  CAS  Google Scholar 

  13. Ishii S, Sugavaneshwar RP, Nagao T (2016) Titanium nitride nanoparticles as plasmonic solar heat transducers. J Phys Chem C 120(4):2343–2348. https://doi.org/10.1021/acs.jpcc.5b09604

    Article  CAS  Google Scholar 

  14. Qin CY, Kim JB, Gonome H, Lee BJ (2020) Absorption characteristics of nanoparticles with sharp edges for a direct-absorption solar collector. Renew Energ 145:21–28. https://doi.org/10.1016/j.renene.2019.05.133

    Article  CAS  Google Scholar 

  15. Wang ZL, Quan XJ, Zhang ZM, Cheng P (2018) Optical absorption of carbon-gold core-shell nanoparticles. J Quant Spectrosc Radiat Transf 205:291–298. https://doi.org/10.1016/j.jqsrt.2017.08.001

    Article  CAS  Google Scholar 

  16. Chen XY, Zhou P, Yan HJ, Chen MJ (2021) Systematically investigating solar absorption performance of plasmonic nanoparticles. Energy 216: 119254.1–119254.9. Doi:https://doi.org/10.1016/j.energy.2020.119254.

  17. Chen MJ, He YR, Huang J, Zhu JQ (2016) Synthesis and solar photo-thermal conversion of Au, Ag, and Au–Ag blended plasmonic nanoparticles. Energy Conv Manag 127:293–300. https://doi.org/10.1016/j.enconman.2016.09.015

    Article  CAS  Google Scholar 

  18. Du M, Tang GH. Plasmonic nanofluids based on gold nanorods/nanoellipsoids/nanosheets for solar energy harvesting. Sol Energy 137(1):393–400. Doi:https://doi.org/10.1016/j.solener.2016.08.029.

  19. Chen MJ, Wang XZ, Hu YW, He YR (2020) Coupled plasmon resonances of Au thorn nanoparticles to enhance solar absorption performance. J Quant Spectrosc and Radiat Transf 250:107029.1–107029.9. Doi:https://doi.org/10.1016/j.jqsrt.2020.107029.

  20. Chen Z, Chen MJ, Yan HJ, Zhou P, Chen XY (2020) Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids. Appl Therm Eng 178:115561.1–115561.9. Doi:https://doi.org/10.1016/j.applthermaleng.2020.115561.

  21. Magdassi S, Grouchko M, Kamyshny A (2010) Copper nanoparticles for printed electronics: routes towards achieving oxidation stability. Materials 3(9):4626–4638. https://doi.org/10.3390/ma3094626

    Article  CAS  Google Scholar 

  22. Nielsen ND, Smitshuysen TEL, Damsgaard CD, Jensen AD, Christensen JM (2021) Characterization of oxide-supported Cu by infrared measurements on adsorbed CO. Surf Sci 703:121725.1–121725.14. Doi:https://doi.org/10.1016/j.susc.2020.121725.

  23. Jain PK, Lee KS, EI-Sayed IH, EI-Sayed MA (2006) Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B 110(14):7238–7248. https://doi.org/10.1021/jp057170o

    Article  CAS  Google Scholar 

  24. Liu XL, Xuan YM (2017) Defects-assisted solar absorption of plasmonic nanoshell-based nanofluids. Sol Energy 146:503–510. https://doi.org/10.1016/j.solener.2017.03.024

    Article  CAS  Google Scholar 

  25. Wang XJ, Flicker JD, Lee BJ, Ready WJ, Zhang ZM (2009) Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes. Nanotechnology 20:215704.1–215704.9. Doi:https://doi.org/10.1088/0957-4484/20/21/215704.

  26. Lim DK, Barhoumi A, Wylie RG, Reznor G, Langer RS, Kohane DS (2013) Enhanced photothermal effect of plasmonic nanoparticles coated with reduced graphene oxide. Nano Lett 13(9):4075–4079. https://doi.org/10.1021/nl4014315

    Article  CAS  Google Scholar 

  27. Vakili M, Hosseinalipour SM, Delfani S, Khosrojerdi S (2016) Photothermal properties of graphene nanoplatelets nanofluid for low-temperature direct absorption solar collectors. Sol Energy Mater Sol Cells 152:187–191. https://doi.org/10.1016/j.solmat.2016.01.038

    Article  CAS  Google Scholar 

  28. Li HB, Kang WJ, ** BJ, Yan Y, Bi HY, Zhu YC, Qian YT (2009) Thermal synthesis of Cu@carbon spherical core–shell structures from carbonaceous matrices containing embedded copper particles. Carbon 48(2):464–469. https://doi.org/10.1016/j.carbon.2009.09.063

    Article  CAS  Google Scholar 

  29. Xu YC, Deng LW, Kuang DT, **e HP, Shan DY, Wang X, Sheng XH, Luo H (2020) Cu@C core-shell nanoparticles with efficient optical absorption: DDA-based simulation and experimental validation. Results Phys 16:102885.1–102885.7. Doi:https://doi.org/10.1016/j.rinp.2019.102885.

  30. Chen Z, Chen MJ, Yan HJ, Zhou P, Chen XY (2020) Enhanced solar thermal conversion performance of plasmonic gold dimer nanofluids. Appl Therm Eng 178:115561.1−115561.9. Doi:https://doi.org/10.1016/j.applthermaleng.2020.115561.

  31. Qin CY, Kang K, Lee I, Lee BJ (2017) Optimization of a direct absorption solar collector with blended plasmonic nanofluids. Sol Energy 150:512–520. https://doi.org/10.1016/j.solener.2017.05.007

    Article  CAS  Google Scholar 

  32. Zhao J, Pinchuk AO, Mcmahon JM, Li SZ, Ausman LK, Atkinson AL, Schatz GC (2016) Methods for describing the electromagnetic properties of silver and gold nanoparticles. Acc Che Res 41(12):1710–1720. https://doi.org/10.1021/ar800028j

    Article  CAS  Google Scholar 

  33. Chen MJ, He YR, Wang XZ, Hu YW (2018) Complementary enhanced solar thermal conversion performance of core-shell nanoparticles. Appl Energy 211:735–742. https://doi.org/10.1016/j.apenergy.2017.11.087

    Article  CAS  Google Scholar 

  34. Johnson PB, Christy RW (1974) Optical constants of transition metals: Ti, V, Cr, Mn, Fe Co, Ni, and Pd. Phys Rev B 9(12):5056–5070. https://doi.org/10.1021/ar800028j

    Article  CAS  Google Scholar 

  35. Querry MR (1985) Optical constants. Contractor report CRDC-CR-85034, Kansas City.

  36. ** JM (1998) Electromagnetic finite element method. ** Dian University Press, **’an.

  37. Tien CL (1988) Thermal radiation in packed and fluidized beds. J Heat Transfer 110(4b):1230–1242. https://doi.org/10.1115/1.3250623

    Article  CAS  Google Scholar 

  38. Modest MF (2013) Radiative heat transfer. Academic Press, San Diego

    Book  Google Scholar 

  39. Howell JR, Siegel R, Menguc MP (2010) Thermal radiation heat transfer. CRC Press, New York

    Book  Google Scholar 

  40. Bohren CF, Huffman DR (1998) Absorption and scattering of light by small particles. Wiley, New York

    Book  Google Scholar 

  41. Melnikova IN, Dlugach ZM, Nakajima T, Kawamoto K (2000) Calculation of the reflection function of an optically thick scattering layer for a Henyey-Greenstein phase function. Appl Opt 39(24):4195–4204. https://doi.org/10.1364/AO.39.004195

    Article  CAS  Google Scholar 

  42. Ma L, Yu BW, Wang SL, Su G, Huang H, Chen H, He YH, Zou J (2014) Controlled synthesis and optical properties of Cu/C core/shell nanoparticles. J Nanopart Res 16:2545.1–2545.9. Doi:https://doi.org/10.1007/s11051-014-2545-5.

  43. Palik ED (1998) Handbook of optical constants of solids. Academic Press, Maryland

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by the Central South University and the National Natural Science Foundation of China (Grant No. 52006246).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meijie Chen.

Additional information

Handling Editor: Pedro Camargo.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, X., Wu, D., Zhou, P. et al. Modeling the solar absorption performance of Copper@Carbon core–shell nanoparticles. J Mater Sci 56, 13659–13672 (2021). https://doi.org/10.1007/s10853-021-06114-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-021-06114-7

Navigation