Log in

Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: a review

  • Review
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

As a promising chemical hydrogen storage material, ammonia borane (AB, NH3BH3) has been receiving significant attention for its hydrogen release property. Researches on the development of effective catalysts for AB hydrolysis under mild conditions have been of potential application interest. In the last few years, some non-noble metal-based materials have been developed for dehydrogenation of AB via hydrolysis, due to their low cost, high activity, and high durability. Therefore, the summary and analysis of the rapidly develo** non-noble metal catalyst systems without noble metals can better grasp the current development status to guide subsequent design and research. In this review, the latest advances in non-noble metal-based catalysts are summarized, which can be divided into the following categories: pure metal-based materials, metal-based compounds (borides, phosphides, and oxides), and metal/metal compound heterogeneous structures. Investigations into the composition, structure, and activity enhancement of the catalyst are further highlighted. Besides, hydrolysis mechanisms, catalyst persistence, and AB regeneration are also discussed.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

Abbreviations

AB:

Ammonia borane, NH3BH3

ALD:

Atomic layer deposition

CNTs:

Carbon nanotubes

DFT:

Density functional theory

e-/h+ :

Electrons and holes

EXAFS:

Extended X-ray absorption fine structure

FT:

Fourier transform

GO:

Graphene oxide

HGR:

Hydrogen generation rate

KIEs:

Kinetic isotope effects

LSPRs:

Localized surface plasmon resonances

MOFs:

Metal-organic frameworks

NCs:

Nanoclusters

NCN:

Nitric acid-treated carbon nitride

NFs:

Nanofibers

NTs:

Nanotubes

NPs:

Nanoparticles

·OH:

Hydroxyl radicals

PCC:

Porous coordination cages

PEI:

Polyethyleneimine

RDS:

Rate-determining step

rGO:

Reduced graphene oxide

SSA:

Specific surface area

THF:

Tetrahydrofuran

TOF:

Turnover frequency

UV–Vis:

Ultraviolet–visible

XAS:

X-ray absorption spectroscopy

XPS:

X-ray photoelectron spectroscopy

3D:

Three-dimensional

References

  1. Manoharan Y, Hosseini SE, Butler B, Alzhahrani H, Senior BTF, Ashuri T, Krohn J (2019) Hydrogen fuel cell vehicles; current status and future prospect. Appl Sci 9(11):2296

    CAS  Google Scholar 

  2. Midilli A, Ay M, Dincer I, Rosen MA (2005) On hydrogen and hydrogen energy strategies. Renew Sustain Energy Rev 9(3):255–271

    CAS  Google Scholar 

  3. Geng S, Yang W, Yu YS (2019) Building MoS2/S-doped g-C3N4 layered heterojunction electrocatalysts for efficient hydrogen evolution reaction. J Catal 375:441–447

    CAS  Google Scholar 

  4. Hosseini SE, Wahid MA (2016) Hydrogen production from renewable and sustainable energy resources: Promising green energy carrier for clean development. Renew Sustain Energy Rev 57:850–866

    CAS  Google Scholar 

  5. Møller KT, Jensen TR, Akiba E, Li HW (2017) Hydrogen-A sustainable energy carrier. Prog Nat Sci Mater Int 27(1):34–40

    Google Scholar 

  6. He T, Pachfule P, Wu H, Xu Q, Chen P (2016) Hydrog carriers Nat Rev Mater 1(12):16067

    Google Scholar 

  7. Yu X, Tang Z, Sun D, Ouyang L, Zhu M (2017) Recent advances and remaining challenges of nanostructured materials for hydrogen storage applications. Prog Mater Sci 88:1–48

    Google Scholar 

  8. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) 2D materials Graphene related two-dimensional crystals and hybrid systems for energy conversion and storage. Science 347(6217):1246501

    Google Scholar 

  9. Ren J, Musyoka NM, Langmi HW, Mathe M, Liao S (2017) Current research trends and perspectives on materials-based hydrogen storage solutions: A critical review. Int J Hydrog Energy 42(1):289–311

    CAS  Google Scholar 

  10. Li L, Huang Y, An C, Wang Y (2019) Lightweight hydrides nanocomposites for hydrogen storage: Challenges, progress and prospects. Sci China Mater 62(11):1597–1625

    Google Scholar 

  11. Kumar R, Karkamkar A, Bowden M, Autrey T (2019) Solid-state hydrogen rich boron-nitrogen compounds for energy storage. Chem Soc Rev 48(21):5350–5380

    CAS  Google Scholar 

  12. Roy B, Hajari A, Kumar V, Manna J, Sharma P (2018) Kinetic model analysis and mechanistic correlation of ammonia borane thermolysis under dynamic heating conditions. Int J Hydrog Energy 43(22):10386–10395

    CAS  Google Scholar 

  13. Sanyal U, Demirci UB, Jagirdar BR, Miele P (2011) Hydrolysis of ammonia borane as a hydrogen source: fundamental issues and potential solutions towards implementation. Chemsuschem 4(12):1731–1739

    CAS  Google Scholar 

  14. Zhang H, Huang M, Wen J, Li Y, Li A, Zhang L, Ali AM, Li Y (2019) Sub-3 nm Rh nanoclusters confined within a metal-organic framework for enhanced hydrogen generation. Chem Commun (Camb) 55(32):4699–4702

    CAS  Google Scholar 

  15. Yao K, Zhao C, Wang N, Li T, Lu W, Wang J (2020) An aqueous synthesis of porous PtPd nanoparticles with reversed bimetallic structures for highly efficient hydrogen generation from ammonia borane hydrolysis. Nanoscale 12(2):638–647

    CAS  Google Scholar 

  16. Ma H, Na C (2015) Isokinetic temperature and size-controlled activation of ruthenium-catalyzed ammonia borane hydrolysis. ACS Catal 5(3):1726–1735

    CAS  Google Scholar 

  17. Zhang L, Wang Y, Li J, Ren X, Lv H, Su X, Hu Y, Xu D, Liu B (2018) Ultrasmall Ru nanoclusters on nitrogen-enriched hierarchically porous carbon support as remarkably active catalysts for hydrolysis of ammonia borane. ChemCatChem 10(21):4910–4916

    Google Scholar 

  18. Liu B, Xu Y, Zhang S, Lv X, Ling Y, Zhou Z, Liu J (2019) FeCo alloy encapsulated within carbon nanotube as efficient and stable catalyst for ammonia borane hydrolysis. Mater Lett 239:124–127

    CAS  Google Scholar 

  19. Wang C, Tuninetti J, Wang Z, Zhang C, Ciganda R, Salmon L, Moya S, Ruiz J, Astruc D (2017) Hydrolysis of ammonia-borane over ni/zif-8 nanocatalyst: high efficiency, mechanism, and controlled hydrogen release. J Am Chem Soc 139(33):11610–11615

    CAS  Google Scholar 

  20. Yüksel Alpaydın C, Gülbay SK, Ozgur Colpan C (2020) A review on the catalysts used for hydrogen production from ammonia borane. Int J Hydrog Energy 45(5):3414–3434

    Google Scholar 

  21. WangFuYangMartinez MoroRamirezMoyaSalmonRuizAstruc QFSMMSLJD (2018) Dramatic synergy in copt nanocatalysts stabilized by “click” dendrimers for evolution of hydrogen from hydrolysis of ammonia borane. ACS Catal 9(2):1110–1119

    Google Scholar 

  22. Zhang J, Dong Y, Liu Q, Zhou M, Mi G, Du X (2019) Hierarchically alloyed Pd–Cu microarchitecture with tunable shapes: morphological engineering, and catalysis for hydrogen evolution reaction of ammonia borane. Int J Hydrog Energy 44(57):30226–30236

    CAS  Google Scholar 

  23. Yang X, Cheng F, Liang J, Tao Z, Chen J (2011) Carbon-supported Ni1-x@Pt-x (x=0.32, 0.43, 0.60, 0.67, and 0.80) core-shell nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy 36(3):1984–1990

    CAS  Google Scholar 

  24. Yang X, Cheng F, Tao Z, Chen J (2011) Hydrolytic dehydrogenation of ammonia borane catalyzed by carbon supported Co core-Pt shell nanoparticles. J Power Sour 196(5):2785–2789

    CAS  Google Scholar 

  25. Yang X, Cheng F, Liang J, Tao Z, Chen J (2009) PtxNi1-x nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy 34(21):8785–8791

    CAS  Google Scholar 

  26. Ren X, Lv H, Yang S, Wang Y, Li J, Wei R, Xu D, Liu B (2019) promoting effect of heterostructured nio/ni on pt nanocatalysts toward catalytic hydrolysis of ammonia borane. J Phys Chem Lett 10(23):7374–7382

    CAS  Google Scholar 

  27. Kang K, Gu X, Guo L, Liu P, Sheng X, Wu Y, Cheng J, Su H (2015) Efficient catalytic hydrolytic dehydrogenation of ammonia borane over surfactant-free bimetallic nanoparticles immobilized on amine-functionalized carbon nanotubes. Int J Hydrog Energy 40(36):12315–12324

    CAS  Google Scholar 

  28. Guo L, Gu X, Kang K, Wu Y, Cheng J, Liu P, Wang T, Su H (2015) Porous nitrogen-doped carbon-immobilized bimetallic nanoparticles as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. J Mater Chem A 3(45):22807–22815

    CAS  Google Scholar 

  29. Liu M, Zhou L, Luo X, Wan C, Xu L (2020) Recent advances in noble metal catalysts for hydrogen production from ammonia borane. Catalysts 10(7):788

    CAS  Google Scholar 

  30. Xu Q, Chandra M (2006) Catalytic activities of non-noble metals for hydrogen generation from aqueous ammonia-borane at room temperature. J Power Sources 163(1):364–370

    CAS  Google Scholar 

  31. Chandra M, Xu Q (2006) A high-performance hydrogen generation system: Transition metal-catalyzed dissociation and hydrolysis of ammonia-borane. J Power Sour 156(2):190–194

    CAS  Google Scholar 

  32. Nozaki A, Tanihara Y, Kuwahara Y, Ohmichi T, Mori K, Nagase T, Yasuda HY, Yamashita H (2016) Skeletal Ni catalysts prepared from amorphous Ni-Zr alloys: enhanced catalytic performance for hydrogen generation from ammonia borane. ChemPhysChem 17(3):412–417

    CAS  Google Scholar 

  33. Nozaki A, Kittima S, Tanihara Y, Kuwahara Y, Ohmichi T, Kamegawa T, Mori K, Yamashita H (2016) Efficient hydrogen generation from ammonia borane on skeletal Cu catalysts prepared from Cu-Ti amorphous alloys. J Jpn Inst Met Mater 80(6):365–369

    CAS  Google Scholar 

  34. Fang Y, **ao Z, Li J, Lollar C, Liu L, Lian X, Yuan S, Banerjee S, Zhang P, Zhou HC (2018) Formation of a highly reactive cobalt nanocluster crystal within a highly negatively charged porous coordination cage. Angew Chem Int Ed 57(19):5283–5287

    CAS  Google Scholar 

  35. Zhao X, Ke D, Han S, Li Y, Zhang H, Cai Y (2019a) Reduced graphene oxide sheets supported waxberry-like co catalysts for improved hydrolytic dehydrogenation of ammonia borane. ChemistrySelect 4(9):2513–2518

    CAS  Google Scholar 

  36. Guo K, Li H, Yu Z (2018) Size-Dependent catalytic activity of monodispersed nickel nanoparticles for the hydrolytic dehydrogenation of ammonia borane. ACS Appl Mater Interfaces 10(1):517–525

    CAS  Google Scholar 

  37. Wei W, Wang Z, Xu J, Zong L, Zhao K, Wang H, Li H, Yu R (2017) Cobalt hollow nanospheres: controlled synthesis, modification and highly catalytic performance for hydrolysis of ammonia borane. Sci Bull 62(5):326–331

    CAS  Google Scholar 

  38. Li Z, He T, Liu L, Chen W, Zhang M, Wu G, Chen P (2017) Covalent triazine framework supported non-noble metal nanoparticles with superior activity for catalytic hydrolysis of ammonia borane: from mechanistic study to catalyst design. Chem Sci 8(1):781–788

    CAS  Google Scholar 

  39. Zhang J, Chen C, Yan W, Duan F, Zhang B, Gao Z, Qin Y (2016) Ni nanoparticles supported on CNTs with excellent activity produced by atomic layer deposition for hydrogen generation from the hydrolysis of ammonia borane. Catal Sci Technol 6(7):2112–2119

    CAS  Google Scholar 

  40. Zhang X-L, Zhang D-X, Chang G-G, Ma X-C, Wu J, Wang Y, Yu H-Z, Tian G, Chen J, Yang X-Y (2019) Bimetallic (Zn/Co) MOFs-derived highly dispersed metallic Co/HPC for completely hydrolytic dehydrogenation of Ammonia-Borane. Ind Eng Chem Res 58(17):7209–7216

    CAS  Google Scholar 

  41. Zhang F, Ma C, Zhang Y, Li H, Fu D, Du X, Zhang X-M (2018) N-doped mesoporous carbon embedded Co nanoparticles for highly efficient and stable H-2 generation from hydrolysis of ammonia borane. J Power Sour 399:89–97

    CAS  Google Scholar 

  42. Li M, Hu J, Lu H (2016) A stable and efficient 3D cobalt-graphene composite catalyst for the hydrolysis of ammonia borane. Catal Sci Technol 6(19):7186–7192

    CAS  Google Scholar 

  43. Wen M, Cui Y, Kuwahara Y, Mori K, Yamashita H (2016) Non-noble-metal nanoparticle supported on metal-organic framework as an efficient and durable catalyst for promoting h-2 production from ammonia borane under visible light irradiation. ACS Appl Mater Inter 8(33):21278–21284

    CAS  Google Scholar 

  44. Song J, Gu X, Cheng J, Fan N, Zhang H, Su H (2018) Remarkably boosting catalytic H-2 evolution from ammonia borane through the visible-light-driven synergistic electron effect of non-plasmonic noble-metal-free nanoparticles and photoactive metal-organic frameworks. Appl Catal 225:424–432

    CAS  Google Scholar 

  45. Liu P, Gu X, Kang K, Zhang H, Cheng J, Su H (2017) Highly efficient catalytic hydrogen evolution from ammonia borane using the synergistic effect of crystallinity and size of noble-metal-free nanoparticles supported by porous metal organic frameworks. ACS Appl Mater Inter 9(12):10759–10767

    CAS  Google Scholar 

  46. Liu H, Liu X, Yang W, Shen M, Geng S, Yu C, Shen B, Yu Y (2019) Photocatalytic dehydrogenation of formic acid promoted by a superior PdAg@g-C3N4 Mott-Schottky heterojunction. J Mater Chem A 7(5):2022–2026

    CAS  Google Scholar 

  47. Wang C, Sun D, Yu X, Zhang X, Lu Z, Wang X, Zhao J, Li L, Yang X (2018) Cu/Ni nanoparticles supported on TiO2(B) nanotubes as hydrogen generation photocatalysts via hydrolysis of ammonia borane. Inorg Chem Front 5(8):2038–2044

    CAS  Google Scholar 

  48. Wang C, Yu X, Zhang X, Lu Z, Wang X, Han X, Zhao J, Li L, Yang X (2020) Enhanced hydrogen production from ammonia borane over CuNi alloy nanoparticles supported on TiO2(B)/anatase mixed-phase nanofibers with high specific surface area. J Alloys Compd 815:152431

    CAS  Google Scholar 

  49. Wang Y, Bao S, Liu Y, Yang W, Yu Y, Feng M, Li K (2020) Efficient photocatalytic reduction of Cr(VI) in aqueous solution over CoS2/g-C3N4-rGO nanocomposites under visible light. Appl Surf Sci 510:145495

    CAS  Google Scholar 

  50. Zhang H, Gu X, Song J, Fan N, Su H (2017) Non-Noble metal nanoparticles supported by postmodified porous organic semiconductors: highly efficient catalysts for visible-light-driven on-demand H-2 evolution from ammonia borane. ACS Appl Mater Inter 9(38):32767–32774

    CAS  Google Scholar 

  51. Song J, Gu X, Cao Y, Zhang H (2019) Porous oxygen vacancy-rich V2O5 nanosheets as superior semiconducting supports of nonprecious metal nanoparticles for efficient on-demand H2 evolution from ammonia borane under visible light irradiation. J Mater Chem A 7(17):10543–10551

    CAS  Google Scholar 

  52. Zhang H, Gu X, Song J (2020) Co, Ni-based nanoparticles supported on graphitic carbon nitride nanosheets as catalysts for hydrogen generation from the hydrolysis of ammonia borane under broad-spectrum light irradiation. Int J Hydrog Energy 45(41):21273–21286

    CAS  Google Scholar 

  53. Yan J-M, Zhang X-B, Han S, Shioyama H, Xu Q (2009) Magnetically recyclable Fe-Ni alloy catalyzed dehydrogenation of ammonia borane in aqueous solution under ambient atmosphere. J Power Sour 194(1):478–481

    CAS  Google Scholar 

  54. Yang K, Yao QL, Lu ZH, Kang ZB, Chen XS (2017) Facile synthesis of cumo nanoparticles as highly active and cost-effective catalysts for the hydrolysis of ammonia borane. Acta Phys-Chim Sin 33(5):993–1000

    CAS  Google Scholar 

  55. Yang K, Yao Q, Huang W, Chen X, Lu Z-H (2017) Enhanced catalytic activity of NiM (M=Cr, Mo, W) nanoparticles for hydrogen evolution from ammonia borane and hydrazine borane. Int J Hydrog Energy 42(10):6840–6850

    CAS  Google Scholar 

  56. Furukawa S, Nishimura G, Takayama T, Komatsu T (2019) Highly Active Ni- and Co-Based Bimetallic Catalysts for Hydrogen Production From Ammonia-Borane. Front Chem 7:138

    CAS  Google Scholar 

  57. Zhang J, Li H, Zhang H, Zhu Y, Mi G (2016) Porously hierarchical Cu@Ni cubic-cage microstructure: Very active and durable catalyst for hydrolytically liberating H-2 gas from ammonia borane. Renew Energy 99:1038–1045

    CAS  Google Scholar 

  58. Wang C, Li L, Yu X, Lu Z, Zhang X, Wang X, Yang X, Zhao J (2020) Regulation of d-Band Electrons to Enhance the Activity of Co-Based Non-Noble Bimetal Catalysts for Hydrolysis of Ammonia Borane. ACS Sustainable Chem Eng 8(22):8256–8266

    CAS  Google Scholar 

  59. Wang C, Wang H, Wang Z, Li X, Chi Y, Wang M, Gao D, Zhao Z (2018) Mo remarkably enhances catalytic activity of Cu@MoCo core-shell nanoparticles for hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 43(15):7347–7355

    CAS  Google Scholar 

  60. Sang W, Wang C, Zhang X, Yu X, Yu C, Zhao J, Wang X, Yang X, Li L (2017) Dendritic Co0.52Cu0.48 and Ni0.19Cu0.81 alloys as hydrogen generation catalysts via hydrolysis of ammonia borane. Int J Hydrog Energy 42(52):30691–30703

    CAS  Google Scholar 

  61. Li S-J, Wang H-L, Yan J-M, Jiang Q (2017) Oleylamine-stabilized Cu0.9Ni0.1 nanoparticles as efficient catalyst for ammonia borane dehydrogenation. Int J Hydrog Energy 42(40):25251–25257

    CAS  Google Scholar 

  62. Bulut A, Yurderi M, Ertas IE, Celebi M, Kaya M, Zahmakiran M (2016) Carbon dispersed copper-cobalt alloy nanoparticles: a cost-effective heterogeneous catalyst with exceptional performance in the hydrolytic dehydrogenation of ammonia-borane. Appl Catal B 180:121–129

    CAS  Google Scholar 

  63. Sun D, Hao Y, Wang C, Zhang X, Yu X, Yang X, Li L, Lu Z, Shang W (2020) TiO2-CdS supported CuNi nanoparticles as a highly efficient catalyst for hydrolysis of ammonia borane under visible-light irradiation. Int J Hydrog Energy 45(7):4390–4402

    CAS  Google Scholar 

  64. Yang X, Li Q, Li L, Lin J, Yang X, Yu C, Liu Z, Fang Y, Huang Y, Tang C (2019) CuCo binary metal nanoparticles supported on boron nitride nanofibers as highly efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. J Power Sour 431:135–143

    CAS  Google Scholar 

  65. Zacho SL, Mielby J, Kegnaes S (2018) Hydrolytic dehydrogenation of ammonia borane over ZIF-67 derived Co nanoparticle catalysts. Catal Sci Technol 8(18):4741–4746

    CAS  Google Scholar 

  66. Wang H, Zhao Y, Cheng F, Tao Z, Chen J (2016) Cobalt nanoparticles embedded in porous N-doped carbon as long-life catalysts for hydrolysis of ammonia borane. Catal Sci Technol 6(10):3443–3448

    CAS  Google Scholar 

  67. Lee M-H, Deka JR, Cheng C-J, Lu N-F, Saikia D, Yang Y-C, Kao H-M (2019) Synthesis of highly dispersed ultra-small cobalt nanoparticles within the cage-type mesopores of 3D cubic mesoporous silica via double agent reduction method for catalytic hydrogen generation. Appl Surf Sci 470:764–772

    CAS  Google Scholar 

  68. Gao M, Yu Y, Yang W, Li J, Xu S, Feng M, Li H (2019) Ni nanoparticles supported on graphitic carbon nitride as visible light catalysts for hydrolytic dehydrogenation of ammonia borane. Nanoscale 11(8):3506–3513

    CAS  Google Scholar 

  69. Wu Y, Wu X, Liu Q, Huang C, Qiu X (2017) Magnetically recyclable Ni@h-BN composites for efficient hydrolysis of ammonia borane. Int J Hydrogen Energy 42(25):16003–16011

    CAS  Google Scholar 

  70. Yang XJ, Li LL, Sang WL, Zhao JL, Wang XX, Yu C, Zhang XH, Tang CC (2017) Boron nitride supported Ni nanoparticles as catalysts for hydrogen generation from hydrolysis of ammonia borane. J Alloys Compd 693:642–649

    CAS  Google Scholar 

  71. Qiu X, Wu X, Wu Y, Liu Q, Huang C (2016) The release of hydrogen from ammonia borane over copper/hexagonal boron nitride composites. RSC Adv 6(108):106211–106217

    CAS  Google Scholar 

  72. Al-Enizil AM, Brooks RM, Ahmad MM, Ei-Halwany MM, El-Newehy MH, Yousef A (2018) In-situ synthesis of amorphous co nanoparticles supported onto TiO2 nanofibers as a catalyst for hydrogen generation from the hydrolysis of ammonia borane. J Nanosci Nanotechnol 18(7):4714–4719

    Google Scholar 

  73. Zhu J, Ma L, Feng J, Geng T, Wei W, **e J (2018) Facile synthesis of Cu nanoparticles on different morphology ZrO2 supports for catalytic hydrogen generation from ammonia borane. J Mater Sci Mater Electron 29(17):14971–14980

    CAS  Google Scholar 

  74. Liu T, Wang Q-T, Sun Y-H, Zhao M (2019) Facile synthesis of monodispersed co nanoparticles on titanium carbides for hydrolysis of ammonia borane at mild temperature. J Nanosci Nanotechnol 19(11):7392–7397

    CAS  Google Scholar 

  75. Chen M, **ong R, Cui X, Wang Q, Liu X (2019) SiO2-encompassed Co@N-doped porous carbon assemblies as recyclable catalysts for efficient hydrolysis of ammonia borane. Langmuir 35(3):671–677

    CAS  Google Scholar 

  76. Li YT, Ullah S, Han Z, Zheng XC, Zheng GP (2020) Hierarchical porous CuNi-based bimetal-organic frameworks as efficient catalysts for ammonia borane hydrolysis. Catal Commun 143:106057

    CAS  Google Scholar 

  77. Chen MJ, Zhang DX, Li D, Ke SC, Ma XC, Chang GG, Chen J, Yang XY (2020) All-around coating of CoNi nanoalloy using a hierarchically porous carbon derived from bimetallic MOFs for highly efficient hydrolytic dehydrogenation of ammonia-borane. New J Chem 44(7):3021–3027

    CAS  Google Scholar 

  78. Cui C, Liu Y, Mehdi S, Wen H, Zhou B, Li J, Li B (2020) Enhancing effect of Fe-do** on the activity of nano Ni catalyst towards hydrogen evolution from NH3BH3. Appl Catal B. https://doi.org/10.1016/j.apcatb.2020.118612

    Article  Google Scholar 

  79. Zhao X, Ke D, Han S, Li Y, Zhang H, Cai Y (2019b) Surfactant PVA-stabilized Co-Mo nanocatalyst supported by graphene oxide sheets toward the hydrolytic dehydrogenation of ammonia borane. NANO 14(11):1950137

    CAS  Google Scholar 

  80. Brooks RM, Maafa IM, Al-Enizi AM, El-Halwany MM, Ubaidullah M, Yousef A (2019) Electrospun bimetallic nicr nanoparticles@carbon nanofibers as an efficient catalyst for hydrogen generation from ammonia borane. Nanomaterials 9(8):1082

    CAS  Google Scholar 

  81. Xu M, Huai X, Zhang H (2018) Highly dispersed CuCo nanoparticles supported on reduced graphene oxide as high-activity catalysts for hydrogen evolution from ammonia borane hydrolysis. J Nanopart Res 20(12):329

    CAS  Google Scholar 

  82. Du X, Tai Y, Liu H, Zhang J (2018) One-step synthesis of reduced graphene oxide supported CoW nanoparticles as efficient catalysts for hydrogen generation from NH3BH3. React Kinet Mech Catal 125(1):171–181

    CAS  Google Scholar 

  83. Wang Q, Zhang F, Du F, Liu T (2017) A cost effective cobalt nickel nanoparticles catalyst with exceptional performance for hydrolysis of ammonia-borane. J Nanosci Nanotechnol 17(12):9333–9338

    CAS  Google Scholar 

  84. Wang Q, Zhang Z, Liu J, Liu R, Liu T (2018) Bimetallic non-noble CoNi nanoparticles monodispersed on multiwall carbon nanotubes: highly efficient hydrolysis of ammonia borane. Mater Chem Phys 204:58–61

    CAS  Google Scholar 

  85. Song F-Z, Zhu Q-L, Yang X-C, Xu Q (2016) Monodispersed CuCo nanoparticles supported on diamine-functionalized graphene as a non-noble metal catalyst for hydrolytic dehydrogenation of ammonia borane. Chemnanomat 2(10):942–945

    CAS  Google Scholar 

  86. Yao Q, Lu Z-H, Huang W, Chen X, Zhu J (2016) High Pt-like activity of the Ni-Mo/graphene catalyst for hydrogen evolution from hydrolysis of ammonia borane. J Mater Chem A 4(22):8579–8583

    CAS  Google Scholar 

  87. Zhao B, Liu J, Zhou L, Long D, Feng K, Sun X, Zhong J (2016) Probing the electronic structure of M-graphene oxide (M=Ni Co, NiCo) catalysts for hydrolytic dehydrogenation of ammonia borane. Appl Surf Sci 362:79–85

    CAS  Google Scholar 

  88. Liang Z, **ao X, Yu X, Huang X, Jiang Y, Fan X, Chen L (2018) Non-noble trimetallic Cu-Ni-Co nanoparticles supported on metal-organic frameworks as highly efficient catalysts for hydrolysis of ammonia borane. J Alloys Compd 741:501–508

    CAS  Google Scholar 

  89. Zhang H, Gu X, Liu P, Song J, Cheng J, Su H (2017) Highly efficient visible-light-driven catalytic hydrogen evolution from ammonia borane using non-precious metal nanoparticles supported by graphitic carbon nitride. J Mater Chem A 5(5):2288–2296

    CAS  Google Scholar 

  90. Cheng S, Liu Y, Zhao Y, Zhao X, Lang Z, Tan H, Qiu T, Wang Y (2019) Superfine CoNi alloy embedded in Al2O3 nanosheets for efficient tandem catalytic reduction of nitroaromatic compounds by ammonia borane. Dalton Trans 48(47):17499–17506

    CAS  Google Scholar 

  91. Guo K, Ding Y, Luo J, Gu M, Yu Z (2019) NiCu bimetallic nanoparticles on silica support for catalytic hydrolysis of ammonia borane: composition-dependent activity and support size effect. ACS Appl Energy Mater 2(8):5851–5861

    CAS  Google Scholar 

  92. Liao J, Lv F, Feng Y, Zhong S, Wu X, Zhang X, Wang H, Li J, Li H (2019) Electromagnetic-field-assisted synthesis of Ni foam film-supported CoCu alloy microspheres composed of nanosheets: a high performance catalyst for the hydrolysis of ammonia borane. Catal Commun 122:16–19

    CAS  Google Scholar 

  93. Liu Y, Zhang J, Guan H, Zhao Y, Yang J-H, Zhang B (2018) Preparation of bimetallic Cu-Co nanocatalysts on poly (diallyldimethylammonium chloride) functionalized halloysite nanotubes for hydrolytic dehydrogenation of ammonia borane. Appl Surf Sci 427:106–113

    CAS  Google Scholar 

  94. Fan D, Lv X, Feng J, Zhang S, Bai J, Lu R, Liu J (2017) Cobalt nickel nanoparticles encapsulated within hexagonal boron nitride as stable, catalytic dehydrogenation nanoreactor. Int J Hydrog Energy 42(16):11312–11320

    CAS  Google Scholar 

  95. Brown HSH, Finholt A, Gilbreath J, Hoekstra H, Hyde E (1953) Sodium borohydride its hydrolysis and its use as a reducing agent and in the generation of hydrogen. J Am Chem Soc 75(1):215–219

    Google Scholar 

  96. Wang X, Liao J, Li H, Wang H, Wang R (2016) Solid-state-reaction synthesis of cotton-like CoB alloy at room temperature as a catalyst for hydrogen generation. J Colloid Interface Sci 475:149–153

    CAS  Google Scholar 

  97. Wang Y, Meng W, Wang D, Li G, Wu S, Cao Z, Zhang K, Wu C, Liu S (2017) Nanostructured thin-film Co-B catalysts for hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy 42(52):30718–30726

    CAS  Google Scholar 

  98. Zou Y, Gao Y, **ang C, Chu H, Qiu S, Yan E, Xu F, Tang C, Sun L (2016) Cobalt-nickel-boron supported over polypyrrole-derived activated carbon for hydrolysis of ammonia borane. Metals 6(7):154

    Google Scholar 

  99. Li C, Wang D, Wang Y, Li G, Hu G, Wu S, Cao Z, Zhang K (2018) Enhanced catalytic activity of the nanostructured Co-W-B film catalysts for hydrogen evolution from the hydrolysis of ammonia borane. J Colloid Interface Sci 524:25–31

    CAS  Google Scholar 

  100. Li C, Meng W, Hu G, Wang Y, Cao Z, Zhang K (2018) Preparation and characterization of nanostructured Co-Mo-B thin film catalysts for the hydrolysis of ammonia borane. Int J Hydrog Energy 43(37):17664–17672

    CAS  Google Scholar 

  101. Wang Y, Meng W, Wang D, Wang Z, Zou K, Cao Z, Zhang K, Wu S, Li G (2019) Ultrafine cobalt-molybdenum-boron nanocatalyst for enhanced hydrogen generation property from the hydrolysis of ammonia borane. Int J Hydrog Energy 44(41):23267–23276

    CAS  Google Scholar 

  102. Wang Y, Wang D, Zhao C, Meng W, Zhao T, Cao Z, Zhang K, Bai S, Li G (2019) Co-Mo-B nanoparticles supported on foam Ni as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane solution. Int J Hydrog Energy 44(21):10508–10518

    CAS  Google Scholar 

  103. Men Y, Su J, Du X, Liang L, Cheng G, Luo W (2018) CoBP nanoparticles supported on three-dimensional nitrogen-doped graphene hydrogel and their superior catalysis for hydrogen generation from hydrolysis of ammonia borane. J Alloys Compd 735:1271–1276

    CAS  Google Scholar 

  104. Cui L, Xu Y, Niu L, Yang W, Liu J (2017) Monolithically integrated CoP nanowire array: An on/off switch for effective on-demand hydrogen generation via hydrolysis of NaBH4 and NH3BH3. Nano Res 10(2):595–604

    CAS  Google Scholar 

  105. Tang C, Qu F, Asiri AM, Luo Y, Sun X (2017) CoP nanoarray: a robust non-noble-metal hydrogen-generating catalyst toward effective hydrolysis of ammonia borane. Inorg Chem Front 4(4):659–662

    CAS  Google Scholar 

  106. Tang C, **e L, Wang K, Du G, Asiri AM, Luo Y, Sun X (2016) A Ni2P nanosheet array integrated on 3D Ni foam: an efficient, robust and reusable monolithic catalyst for the hydrolytic dehydrogenation of ammonia borane toward on-demand hydrogen generation. J Mater Chem A 4(32):12407–12410

    CAS  Google Scholar 

  107. Qu X, Jiang R, Li Q, Zeng F, Zheng X, Xu Z, Chen C, Peng J (2019) The hydrolysis of ammonia borane catalyzed by NiCoP/OPC-300 nanocatalysts: high selectivity and efficiency, and mechanism. Green Chem 21(4):850–860

    CAS  Google Scholar 

  108. Fu Z-C, Xu Y, Chan SL-F, Wang W-W, Li F, Liang F, Chen Y, Lin Z-S, Fu W-F, Che C-M (2017) Highly efficient hydrolysis of ammonia borane by anion (-OH, F-, Cl-)-tuned interactions between reactant molecules and CoP nanoparticles. Chem Commun 53(4):705–708

    CAS  Google Scholar 

  109. Hou C-C, Li Q, Wang C-J, Peng C-Y, Chen Q-Q, Ye H-F, Fu W-F, Che C-M, Lopez N, Chen Y (2017) Ternary Ni-Co-P nanoparticles as noble-metal-free catalysts to boost the hydrolytic dehydrogenation of ammonia-borane. Energy Environ Sci 10(8):1770–1776

    CAS  Google Scholar 

  110. Wang Y, Shen G, Zhang Y, Pan L, Zhang X, Zou J-J (2020) Visible-light-induced unbalanced charge on NiCoP/TiO2 sensitized system for rapid H-2 generation from hydrolysis of ammonia borane. Appl Catal B 260:118183

    CAS  Google Scholar 

  111. Kalidindi SB, Sanyal U, Jagirdar BR (2008) Nanostructured Cu and Cu@Cu(2)O core shell catalysts for hydrogen generation from ammonia-borane. Phys Chem Chem Phys 10(38):5870–5874

    CAS  Google Scholar 

  112. Filiz BC, Figen AK, Piskin S (2018) Dual combining transition metal hybrid nanoparticles for ammonia borane hydrolytic dehydrogenation. Appl Catal A 550:320–330

    CAS  Google Scholar 

  113. Feng X, Chen X-M, Qiu P, Wu D, Hamilton EJM, Zhang J, Chen X (2018) Copper oxide hollow spheres: Synthesis and catalytic application in hydrolytic dehydrogenation of ammonia borane. Int J Hydrog Energy 43(45):20875–20881

    CAS  Google Scholar 

  114. Komova OV, Odegova GV, Gorlova AM, Bulavchenko OA, Pochtar AA, Netskina OV, Simagina VI (2019) Copper-iron mixed oxide catalyst precursors prepared by glycine-nitrate combustion method for ammonia borane dehydrogenation processes. Int J Hydrog Energy 44(44):24277–24291

    CAS  Google Scholar 

  115. Liu Y, Guo H, Sun K, Jiang J (2019) Magnetic CoOx@C-reduced graphene oxide composite with catalytic activity towards hydrogen generation. Int J Hydrog Energy 44(52):28163–28172

    CAS  Google Scholar 

  116. Liao J, Feng Y, Lin W, Su X, Ji S, Li L, Zhang W, Pollet BG, Li H (2020) CuO-NiO/Co3O4 hybrid nanoplates as highly active catalyst for ammonia borane hydrolysis. Int J Hydrog Energy 45(15):8168–8176

    CAS  Google Scholar 

  117. Feng Y, Wang H, Chen X, Lv F, Li Y, Zhu Y, Xu C, Zhang X, Liu H-R, Li H (2020) Simple synthesis of Cu2O–CoO nanoplates with enhanced catalytic activity for hydrogen production from ammonia borane hydrolysis. Int J Hydrog Energy 45(35):17164–17173

    CAS  Google Scholar 

  118. Guan SY, An LL, Ashraf S, Zhang LN, Liu BZ, Fan YP, Li BJ (2020a) Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl Catal B 269:118775

    CAS  Google Scholar 

  119. Li X, Gui L, Zou H (2019) Bracelet-like Ni04Cu06O microstructure composed of well-aligned nanoplatelets as a superior catalyst to the hydrolysis of ammonia borane. Front Chem 7:776

    CAS  Google Scholar 

  120. Feng K, Zhong J, Zhao B, Zhang H, Xu L, Sun X, Lee S-T (2016) CuxCo1-xO nanoparticles on graphene oxide as a synergistic catalyst for high-efficiency hydrolysis of ammonia-borane. Angew Chem Int Ed 55(39):11950–11954

    CAS  Google Scholar 

  121. Zheng H, Feng K, Shang Y, Kang Z, Sun X, Zhong J (2018) Cube-like CuCoO nanostructures on reduced graphene oxide for H-2 generation from ammonia borane. Inorg Chem Front 5(5):1180–1187

    CAS  Google Scholar 

  122. Shang Y, Feng K, Wang Y, Sun X, Zhong J (2019) Carbon nitride supported Ni0.5Co0.5O nanoparticles with strong interfacial interaction to enhance the hydrolysis of ammonia borane. RSC Adv 9(20):11552–11557

    CAS  Google Scholar 

  123. Guo X, Li M, Liu Y, Huang Y, Geng S, Yang W, Yu Y (2020) Hierarchical core-shell electrode with NiWO4 nanoparticles wrapped MnCo2O4 nanowire arrays on Ni foam for high-performance asymmetric supercapacitors. J Colloid Interface Sci 563:405–413

    CAS  Google Scholar 

  124. Liao J, Feng Y, Wu S, Ye H, Zhang J, Zhang X, **e F, Li H (2019) Hexagonal CuCo2O4 nanoplatelets, a highly active catalyst for the hydrolysis of ammonia borane for hydrogen production. Nanomaterials 9(3):360

    CAS  Google Scholar 

  125. Liu Q, Zhang S, Liao J, Feng K, Zheng Y, Pollet BG, Li H (2017) CuCo2O4 nanoplate film as a low-cost, highly active and durable catalyst towards the hydrolytic dehydrogenation of ammonia borane for hydrogen production. J Power Sour 355:191–198

    CAS  Google Scholar 

  126. Liu Q, Zhang S, Liao J, Huang X, Zheng Y, Li H (2017) MnCo2O4 film composed of nanoplates: synthesis, characterization and its superior catalytic performance in the hydrolytic dehydrogenation of ammonia borane. Catal Sci Technol 7(16):3573–3579

    CAS  Google Scholar 

  127. Liao J, Li H, Zhang X, Feng K, Yao Y (2016) Fabrication of a Ti-supported NiCo2O4 nanosheet array and its superior catalytic performance in the hydrolysis of ammonia borane for hydrogen generation. Catal Sci Technol 6(11):3893–3899

    CAS  Google Scholar 

  128. Lu D, Liao J, Zhong S, Leng Y, Ji S, Wang H, Wang R, Li H (2018) Cu06Ni04Co2O4 nanowires, a novel noble-metal free catalyst with ultrahigh catalytic activity towards the hydrolysis of ammonia borane for hydrogen production. Int J Hydrog Energy 43(11):5541–5550

    CAS  Google Scholar 

  129. Lu D, Li J, Lin C, Liao J, Feng Y, Ding Z, Li Z, Liu Q, Li H (2019) A simple and scalable route to synthesize CoxCu1-xCo2O4@CoyCu1-yCo2O4 yolk-shell microspheres, a high-performance catalyst to hydrolyze ammonia borane for hydrogen production. Small 15(10):1805460

    Google Scholar 

  130. Feng Y, Zhang J, Ye H, Li L, Wang H, Li X, Zhang X, Li H (2019) Ni05Cu05Co2O4 nanocomposites, morphology, controlled synthesis, and catalytic performance in the hydrolysis of ammonia borane for hydrogen production. Nanomaterials 9(9):1334

    CAS  Google Scholar 

  131. Lu D, Liao J, Li H, Ji S, Pollet BG (2019) Co3O4/CuMoO4 hybrid microflowers composed of nanorods with rich particle boundaries as a highly active catalyst for ammonia borane hydrolysis. ACS Sustain Chem Eng 7(19):16474–16482

    CAS  Google Scholar 

  132. Lu D, Liao J, Leng Y, Zhong S, He J, Wang H, Wang R, Li H (2018) Mo-doped Cu0.5Ni0.5Co2O4 nanowires, a strong substitute for noble-metal-based catalysts towards the hydrolysis of ammonia borane for hydrogen production. Catal Commun 114:89–92

    CAS  Google Scholar 

  133. Lu D, Feng Y, Ding Z, Liao J, Zhang X, Liu H-R, Li H (2019) MoO3-doped MnCo2O4 microspheres consisting of nanosheets: an inexpensive nanostructured catalyst to hydrolyze ammonia borane for hydrogen generation. Nanomaterials 9(1):21

    Google Scholar 

  134. Liao J, Lu D, Diao G, Zhang X, Zhao M, Li H (2018) Co0.8Cu0.2MoO4 microspheres composed of nanoplatelets as a robust catalyst for the hydrolysis of ammonia borane. ACS Sustain Chem Eng 6(5):5843–5851

    CAS  Google Scholar 

  135. Li J, Li F, Liao J, Liu Q, Li H (2019) Cu0.4Co0.6MO4 nanorods supported on graphitic carbon nitride as a highly active catalyst for the hydrolytic dehydrogenation of ammonia borane. Catalysts 9(9):714

    Google Scholar 

  136. Yin H, Kuwahara Y, Mori K, Cheng H, Wen M, Huo Y, Yamashita H (2017) Localized surface plasmon resonances in plasmonic molybdenum tungsten oxide hybrid for visible-light-enhanced catalytic reaction. J Phys Chem C 121(42):23531–23540

    CAS  Google Scholar 

  137. Yin H, Kuwahara Y, Mori K, Cheng H, Wen M, Yamashita H (2017) High-surface-area plasmonic MoO3-x: rational synthesis and enhanced ammonia borane dehydrogenation activity. J Mater Chem A 5(19):8946–8953

    CAS  Google Scholar 

  138. Gong J, Li Z, Zhang T, Chen R, Zheng X, Zhang G (2017) Morphology-dependent catalytic activity of plasmonic MoO3-x for hydrolytic dehydrogenation of ammonia borane. Funct Mater Lett 10(6):1750079

    CAS  Google Scholar 

  139. Yousef A, Brooks RM, El-Halwany MM, Obaid M, El-Newehy MH, Al-Deyab SS, Barakat NAM (2016) A novel and chemical stable Co-B nanoflakes-like structure supported over titanium dioxide nanofibers used as catalyst for hydrogen generation from ammonia borane complex. Int J Hydrog Energy 41(1):285–293

    CAS  Google Scholar 

  140. Izgi MS, Sahin O, Saka C (2019) gamma-Al2O3 supported/Co-Cr-B catalyst for hydrogen evolution via NH3BH3 hydrolysis. Mater Manuf Processes 34(14):1620–1626

    Google Scholar 

  141. Wang Y, Zou KL, Wang D, Meng W, Qi N, Cao ZQ, Zhang K, Chen HH, Li GD (2020) Highly efficient hydrogen evolution from the hydrolysis of ammonia borane solution with the Co-Mo-B/NF nanocatalyst. Renew Energy 154:453–460

    CAS  Google Scholar 

  142. Feng X, Zhao Y, Liu D, Mo Y, Liu Y, Chen X, Yan W, ** X, Chen B, Duan X, Chen D, Yang C (2018) Towards high activity of hydrogen production from ammonia borane over efficient non-noble Ni5P4 catalyst. Int J Hydrog Energy 43(36):17112–17120

    CAS  Google Scholar 

  143. Du X, Yang C, Zeng X, Wu T, Zhou Y, Cai P, Cheng G, Luo W (2017) Amorphous NiP supported on rGO for superior hydrogen generation from hydrolysis of ammonia borane. Int J Hydrog Energy 42(20):14181–14187

    CAS  Google Scholar 

  144. Zhang R, Zheng J, Chen T, Ma G, Zhou W (2018) RGO-wrapped Ni-P hollow octahedrons as noble-metal-free catalysts to boost the hydrolysis of ammonia borane toward hydrogen generation. J Alloys Compd 763:538–545

    CAS  Google Scholar 

  145. Hou C-C, Chen Q-Q, Li K, Wang C-J, Peng C-Y, Shi R, Chen Y (2019) Tailoring three-dimensional porous cobalt phosphides templated from bimetallic metal-organic frameworks as precious metal-free catalysts towards the dehydrogenation of ammonia-borane. J Mater Chem A 7(14):8277–8283

    CAS  Google Scholar 

  146. Du Y, Liu C, Cheng G, Luo W (2017) Cuboid Ni2P as a bifunctional catalyst for efficient hydrogen generation from hydrolysis of ammonia borane and electrocatalytic hydrogen evolution. Chem-Asian J 12(22):2967–2972

    CAS  Google Scholar 

  147. Ma X-C, He Y-Y, Zhang D-X, Chen M-J, Ke S-C, Yin Y-X, Chang G-G (2020) Cobalt-based MOF-derived CoP/Hierarchical porous carbon (HPC) composites as robust catalyst for efficient dehydrogenation of ammonia-borane. Chemistryselect 5(7):2190–2196

    CAS  Google Scholar 

  148. Oh S, Song D, Kim H, Sohn D, Hong K, Lee M, Son S, Cho E, Kwon H (2019) Cobalt-iron-phosphorus catalysts for efficient hydrogen generation from hydrolysis of ammonia borane solution. J Alloys Compd 806:643–649

    CAS  Google Scholar 

  149. Yang J, Yuan Q, Liu Y, Huang X, Qiao Y, Lu J, Song C (2019) Low-cost ternary Ni-Fe-P catalysts supported on Ni foam for hydrolysis of ammonia borane. Inorg Chem Front 6(5):1189–1194

    CAS  Google Scholar 

  150. Yang C, Men Y, Xu Y, Liang L, Cai P, Luo W (2019) In Situ Synthesis of NiCoP nanoparticles supported on reduced graphene oxide for the catalytic hydrolysis of ammonia borane. ChemPlusChem 84(4):382–386

    CAS  Google Scholar 

  151. Zhou X, Meng X-F, Wang J-M, Shang N-Z, Feng T, Gao Z-Y, Zhang H-X, Ding X-L, Gao S-T, Feng C, Wang C (2019) Boron nitride supported NiCoP nanoparticles as noble metal-free catalyst for highly efficient hydrogen generation from ammonia borane. Int J Hydrog Energy 44(10):4764–4770

    CAS  Google Scholar 

  152. Lin Y, Yang L, Jiang H, Zhang Y, Cao D, Wu C, Zhang G, Jiang J, Song L (2019) Boosted reactivity of ammonia borane dehydrogenation over Ni/Ni2P heterostructure. J Phys Chem Lett 10(5):1048–1054

    CAS  Google Scholar 

  153. Li J, Ren X, Lv H, Wang Y, Li Y, Liu B (2020) Highly efficient hydrogen production from hydrolysis of ammonia borane over nanostructured Cu@CuCoOx supported on graphene oxide. J Hazard Mater 391:122199–122199

    CAS  Google Scholar 

  154. Zhang H, Fan Y, Liu B, Liu Y, Ashraf S, Wu X, Han G, Gao J, Li B (2019) Birdcage-type CoOx-carbon catalyst derived from metal-organic frameworks for enhanced hydrogen generation. ACS Sustain Chem Eng 7(11):9782–9792

    CAS  Google Scholar 

  155. Du J, Hou J, Li B, Qin R, Xu C, Liu H (2020) Support-free 3D hierarchical nanoporous Cu@Cu2O for fast tandem ammonia borane dehydrogenation and nitroarenes hydrogenation under mild conditions. J Alloys Compd 815:152372

    Google Scholar 

  156. Yao Q, Lu Z-H, Yang Y, Chen Y, Chen X, Jiang H-L (2018) Facile synthesis of graphene-supported Ni-CeOx nano-composites as highly efficient catalysts for hydrolytic dehydrogenation of ammonia borane. Nano Res 11(8):4412–4422

    CAS  Google Scholar 

  157. Men Y, Su J, Huang C, Liang L, Cai P, Cheng G, Luo W (2018) Three-dimensional nitrogen-doped graphene hydrogel supported Co-CeOx nanoclusters as efficient catalysts for hydrogen generation from hydrolysis of ammonia borane. Chin Chem Lett 29(11):1671–1674

    CAS  Google Scholar 

  158. Hu J, Chen Z, Li M, Zhou X, Lu H (2014) Amine-capped Co nanoparticles for highly efficient dehydrogenation of ammonia borane. ACS Appl Mater Inter 6(15):13191–13200

    CAS  Google Scholar 

  159. Peng CY, Kang L, Cao S, Chen Y, Lin ZS, Fu WF (2015) Nanostructured Ni2 P as a robust catalyst for the hydrolytic dehydrogenation of ammonia-borane. Angew Chem Int Ed Engl 54(52):15725–15729

    CAS  Google Scholar 

  160. Guan S, An L, Ashraf S, Zhang L, Liu B, Fan Y, Li B (2020b) Oxygen vacancy excites Co3O4 nanocrystals embedded into carbon nitride for accelerated hydrogen generation. Appl Catal B 269:118775

    CAS  Google Scholar 

  161. Ramachandran PV, Raju BC, Gagare PD (2012) One-pot synthesis of ammonia-borane and trialkylamine-boranes from trimethyl borate. Org Lett 14(24):6119–6121

    Google Scholar 

  162. Liu C-H, Wu Y-C, Chou C-C, Chen B-H, Hsueh C-L, Ku J-R, Tsau F (2012) Hydrogen generated from hydrolysis of ammonia borane using cobalt and ruthenium based catalysts. Int J Hydrog Energy 37(3):2950–2959

    CAS  Google Scholar 

Download references

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Nos. 51871088, 21603052, 51771068, and 51771067), the key Basic Research Programme of Hebei Province of China (17964401D), Natural Science Foundation of Tian** (18JCQNJC77900), and the Natural Science Foundation of Hebei Province (Nos. B2019202194 and B201820167).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ao**g Yang.

Additional information

Handling Editor: Christopher Blanford.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Zhao, J., Du, X. et al. Hydrogen production from ammonia borane hydrolysis catalyzed by non-noble metal-based materials: a review. J Mater Sci 56, 2856–2878 (2021). https://doi.org/10.1007/s10853-020-05493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-020-05493-7

Navigation