Log in

A general method to synthesize a family of mesoporous silica nanoparticles less than 100 nm and their applications in anti-reflective/fogging coating

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Recent advances in strategies for synthesizing mesoporous silica particle (MSN) have enabled the precise control of its morphology, size, and composition which afford the applications in drug delivery and heterogeneous catalysis. Especially for drug delivery, the size of MSNs <100 nm is a prerequisite allowing for hemolysis effect. However, a general method for the synthesis of MSNs with uniform size distribution below 100 nm still remains challenging. Herein, a general method was developed to synthesize a family of aqueous colloidal MSNs with uniform size <100 nm using small organic amines (SOAs) or nitrogen-containing heterocyclic compounds (NCHCs) as alkaline catalysts in the presence of cationic quaternary ammonium salts as organic templates. The size of MSNs can be easily adjusted within the range from 28 to 100 nm by the cooperative effect of the mixed alkaline catalysts or using different quaternary ammonium surfactants as templates. Also, texture properties of MSNs including pore diameter and surface area were controlled by selecting different kinds of SOAs or NCHCs. Based on the low refractive index of MSNs, these as-prepared MSNs serve as building blocks and afford an anti-reflective/fogging coating on glass slide through a facile dip-coating method.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Fig. 11

Similar content being viewed by others

References

  1. Kresge CT, Leonowicz ME, Roth WJ, Vartuli JC, Beck JS (1992) Ordered mesoporous molecular sieves synthesized by liquid-crystal template mechanism. Nature 359:710–712

    Article  Google Scholar 

  2. Beck JS, Vartuwli JC, Roth WJ, Leonowicz ME, Kresge CT, Schmitt KD, Chu CTW, Olson DH, Sheppard EW, McCullen SB, Higgins JB, Schlenker JL (1992) A new family of mesoporous molecular sieves prepared with liquid crystal templates. J Am Chem Soc 144:10834–10843

    Article  Google Scholar 

  3. Monnier A, Schuth F, Huo Q, Kumar D, Margolese D, Maxwell RS, Stucky GD, Krishnamurty M, Petroff P, Firouzi A, Janicke M, Chmelka BF (1993) Cooperative formation of inorganic-organic interfaces in the synthesis of silicate mesostructures. Science 261:1299–1303

    Article  Google Scholar 

  4. Hou Q, Margolese DI, Ciesla U, Demuth DG, Feng P, Gier TE, Sieger P, Firouzi A, Chmelka BF, Schüth F, Stucky GD (1994) Organization of organic molecules with inorganic molecular species into nanocomposite biphase arrays. Chem Mater 6:1176–1191

    Article  Google Scholar 

  5. Hou Q, Margolese DI, Cielsa U, Feng P, Gier TE, Sieger P, Leon R, Petroff PM, Schiith F, Stucky GD (1994) Generalized synthesis of periodic surfactant/inorganic composite material. Nature 368:317–321

    Article  Google Scholar 

  6. Stephen AB, Prouzet E, Pinnavaiat TJ (1995) Templating of mesoporous molecular sieves by nonionic polyethylene oxide surfactants. Science 269:1242–1244

    Article  Google Scholar 

  7. Tanev PT, Pinnavaia TJ (1995) A neutral templating route to mesoporous molecular sieves. Science 267:865–867

    Article  Google Scholar 

  8. Zhao DY, Feng JL, Huo QS, Melosh N, Fredrickson GH, Chmelka BF, Stucky GD (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552

    Article  Google Scholar 

  9. Zhao DY, Huo QS, Feng JL, Chmelka BF, Stucky GD (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036

    Article  Google Scholar 

  10. Hollamby MJ, Borisova D, Brown P, Eastoe J, Grillo I, Shchukin D (2012) Growth of mesoporous silica nanoparticles monitored by time-resolved small-angle neutron scattering. Langmuir 28:4425–4433

    Article  Google Scholar 

  11. Dou J, Zeng HC (2012) Targeted synthesis of silicomolybdic acid (Keggin acid) inside mesoporous silica hollow spheres for Friedel-Crafts alkylation. J Am Chem Soc 134:16235–16246

    Article  Google Scholar 

  12. Niphadkar PS, Chitale SK, Sonar SK, Deshpande SS, Joshi PN, Awate SV (2014) Synthesis, characterization and photocatalytic behavior of TiO2-SiO2 mesoporous composites in hydrogen generation from water splitting. J Mater Sci 49:6383–6391. doi:10.1007/s10853-014-8365-2

    Article  Google Scholar 

  13. Wang HY, Wan Y (2009) Synthesis of ordered mesoporous Pd/carbon catalyst with bimodal pores and its application in water-mediated Ullmann coupling reaction of chlorobenzene. J Mater Sci 44:6553–6562. doi:10.1007/s10853-009-3612-7

    Article  Google Scholar 

  14. de Vos RM, Verwij H (1998) High-selectivity, high-flux silica membranes for gas separation. Science 279:1710–1711

    Article  Google Scholar 

  15. Dong J, Xu ZH, Wang F (2008) Engineering and characterization of mesoporous silica-coated magnetic particles for mercury removal from industrial effluents. Appl Surf Sci 254:3522–3530

    Article  Google Scholar 

  16. Lu F, Wu SH, Hung Y, Mou CY (2009) Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles. Small 5:1408–1413

    Article  Google Scholar 

  17. Lin YS, Haynes CL (2010) Impacts of mesoporous silica nanoparticle size, pore ordering, and pore integrity on hemolytic activity. J Am Chem Soc 132:4834–4842

    Article  Google Scholar 

  18. Townson JL, Lin YS, Agola JO, Carnes EC, Leong HS, Lewis JD, Haynes CL, Brinker CJ (2013) Re-examining the size/charge paradigm: differing in vivo characteristics of size- and charge-matched mesoporous silica nanoparticles. J Am Chem Soc 135:16030–16033

    Article  Google Scholar 

  19. Zhao MW, Gao YN, Zheng LQ, Kang WP, Bai XT, Dong B (2010) Microporous silica hollow microspheres and hollow worm-like materials: a simple method for their synthesis and their application in controlled release. Eur J Inorg Chem 6:975–982

    Article  Google Scholar 

  20. Jeddi K, Sarikhani K, Qazvini NT, Chen P (2014) Stabilizing lithium/sulfur batteries by a composite polymer electrolyte containing mesoporous silica particles. J Power Sources 245:656–662

    Article  Google Scholar 

  21. Hoshikawa Y, Yabe H, Nomura A, Yamaki T, Shimojima A, Okubo T (2010) Mesoporous silica nanoparticles with remarkable stability and dispersibility for antireflective coatings. Chem Mater 22:12–14

    Article  Google Scholar 

  22. Shimizu W, Murakami Y (2010) Microporous silica thin films with low refractive indices and high young’s modulus. ACS Appl Mater Interfaces 2:3128–3133

    Article  Google Scholar 

  23. Grün M, Lauer I, Unger KK (1997) The synthesis of micrometer- and submicrometer-size spheres of ordered mesoporous oxide MCM-41. Adv Mater 9:254–257

    Article  Google Scholar 

  24. Pauwels B, van Tendeloo G, Thoelen C, van Rhijn W, Jacobs PA (2001) Structure determination of spherical MCM-41 particles. Adv Mater 13:1317–1320

    Article  Google Scholar 

  25. Fowler CE, Khushalani D, Lebeau B, Mann S (2001) Nanoscale materials with mesostructured interiors. Adv Mater 13:649–652

    Article  Google Scholar 

  26. Nooney RI, Thirunavukkarasu D, Chen YM, Josephs R, Ostafin AE (2002) Synthesis of nanoscale mesoporous silica spheres with controlled particle size. Chem Mater 14:4721–4728

    Article  Google Scholar 

  27. Lin HP, Tsai CP (2003) Synthesis of mesoporous silica nanoparticles from a low-concentration C(n)TMAX-sodium silicate components. Chem Lett 32:1092–1093

    Article  Google Scholar 

  28. Suzuki K, Ikari K, Imai H (2004) Synthesis of silica nanoparticles having a well-ordered mesostructure using a double surfactant system. J Am Chem Soc 126:462–463

    Article  Google Scholar 

  29. Urata C, Aoyama Y, Tonegawa A, Yamauchi Y, Kuroda K (2009) Dialysis process for the removal of surfactants to form colloidal mesoporous silica nanoparticles. Chem Commun 34:5094–5096

    Article  Google Scholar 

  30. Lin YS, Abadeer N, Hurley KR, Haynes CL (2011) Ultrastable, redispersible, small, and highly organomodified mesoporous silica nanotherapeutics. J Am Chem Soc 133:20444–20457

    Article  Google Scholar 

  31. Wang JZ, Sugawara-Narutaki A, Fukao M, Yokoi T, Shimojima A, Okubo T (2011) Two-phase synthesis of monodisperse silica nanospheres with amines or ammonia catalyst and their controlled self-assembly. ACS Appl Mater Interfaces 3:1538–1544

    Article  Google Scholar 

  32. Wang JZ, Sugawara-Narutaki A, Shimojima A, Okubo T (2012) Biphasic synthesis of colloidal mesoporous silica nanoparticles using primary amine catalysts. J Colloid Interf Sci 385:41–47

    Article  Google Scholar 

  33. Yamada H, Urata C, Aoyama Y, Osada S, Yamauchi Y, Kuroda K (2012) Preparation of colloidal mesoporous silica nanoparticles with different diameters and their unique degradation behavior in static aqueous systems. Chem Mater 24:1462–1471

    Article  Google Scholar 

  34. Yamada H, Urata C, Higashitamori S, Aoyama Y, Yamauchi Y, Kuroda K (2014) Critical roles of cationic surfactants in the preparation of colloidal mesostructured silica nanoparticles: control of mesostructure, particle size, and dispersion. ACS Appl Mater Interfaces 6:3491–3500

    Article  Google Scholar 

  35. Yano K, Fukushima Y (2003) Particle size control of mono-dispersed super-microporous silica spheres. J Mater Chem 13:2577–2581. doi:10.1016/j.micromeso.2006.02.013

    Article  Google Scholar 

  36. Fukushima Y, Yano K (2006) Synthesis of monodispersed super-microporous/mesoporous silica spheres with diameters in the low submicron range. Micropor Mesopor Mat 93:190–198

    Article  Google Scholar 

  37. Möller K, Kobler J, Bein T (2007) Colloidal suspensions of nanometer-sized mesoporous silica. Adv Funct Mater 17:605–612

    Article  Google Scholar 

  38. Kobler J, Möller K, Bein T (2008) Colloidal suspensions of functionalized mesoporous silica nanoparticles. ACS Nano 2:791–799

    Article  Google Scholar 

  39. Jansen JC, Shan Z, Marchese L, Zhou W, Puil NVD, Maschmeyer T (2001) A new templating method for three-dimensional mesopore networks. Chem Commun 8:713–714

    Article  Google Scholar 

  40. Haskouri JEI, de Zárate DO, Guillem C, Beltrán-Porter A, Caldés M, Marcos MD, Beltrán-Porter D, Julio L, Amorós P (2002) Hierarchical Porous Nanosized Organosilicas. Chem Mater 14:4502–4504

    Article  Google Scholar 

  41. Lin YS, Hurley KR, Haynes CL (2012) Critical considerations in the biomedical use of mesoporous silica nanoparticles. J Phys Chem Lett 3:364–374

    Article  Google Scholar 

  42. Pan LM, He QJ, Liu JN, Chen Y, Ma M, Zhang LL, Shi JL (2012) Nuclear-targeted drug delivery of TAT peptide-conjugated monodisperse mesoporous silica nanoparticles. J Am Chem Soc 134:5722–5725

    Article  Google Scholar 

  43. Zhang Q, Wang XL, Li PZ, Nguyen KT, Wang XJ, Luo Z, Zhang HC, Tan NS, Zhao YL (2014) Biocompatible, uniform, and redispersible mesoporous silica nanoparticles for cancer-targeted drug delivery in vivo. Adv Funct Mater 24:2450–2461

    Article  Google Scholar 

  44. Zhang K, Xu LL, Jiang JG, Calin N, Lam KF, Zhang SJ, Wu HH, Wu GD, Albela B, Bonneviot L, Wu P (2013) Facile large-scale synthesis of monodisperse mesoporous silica nanospheres with tunable pore structure. J Am Chem Soc 135:2427–2430

    Article  Google Scholar 

  45. Qiao ZA, Zhang L, Guo MY, Liu YL, Huo QS (2009) Synthesis of mesoporous silica nanoparticles via controlled hydrolysis and condensation of silicon alkoxide. Chem Mater 21:3823–3829

    Article  Google Scholar 

  46. Chiang YD, Lian HY, Leo SY, Wang SG, Yamauchi Y, Wu KCW (2011) Controlling particle size and structural properties of mesoporous silica nanoparticles using the Taguchi method. J Phys Chem C 115:13158–13165

    Article  Google Scholar 

  47. Valtchev V, Tosheva L (2013) Porous nanosized particles: preparation, properties, and applications. Chem Rev 113:6734–6760

    Article  Google Scholar 

  48. Thanh NTK, Maclean N, Mahiddine S (2014) Mechanisms of nucleation and growth of nanoparticles in solution. Chem Rev 114:7610–7630

    Article  Google Scholar 

  49. Carcouët CCMC, van de Put MWP, Mezari B, Magusin PCMM, Laven J, Bomans PHH, Friedrich H, Esteves ACC, Sommerdijk NAJM, van Benthem RATM, de With G (2014) Nucleation and growth of monodisperse silica nanoparticles. Nano Lett 14:1433–1438

    Article  Google Scholar 

  50. Yokoi T, Wakabayashi J, Otsuka Y, Fan W, Iwama M, Watanabe R, Aramaki K, Shimojima A, Tatsumi T, Okubo T (2009) Mechanism of formation of uniform-sized silica nanospheres catalyzed by basic amino acids. Chem Mater 21:3719–3729

    Article  Google Scholar 

  51. Iler RK (1978) The chemistry of silica. Wiley, New York

    Google Scholar 

  52. Ryoo R, Park IS, Jun S, Lee CW, Kruk M, Jaroniec M (2001) Synthesis of ordered and disordered silicas with uniform pores on the border between micropore and mesopore regions using short double-chain surfactants. J Am Chem Soc 123:1650–1657

    Article  Google Scholar 

  53. Li XY, Shi B, Wang YJ, Li MM, Liu Y, Gao L, Mao LQ (2015) Preparation of monodispersed mesoporous silica particles and their applications in adsorption of Au3+ and Hg2+ after mercapto-functionalized treatment. Micropor Mesopor Mat 214:15–22

    Article  Google Scholar 

  54. Yi ZF, Dumée LF, Garvey CJ, Feng CF, She FH, Rookes JE, Mudie S, Cahill DM, Kong LX (2015) A New Insight into Growth Mechanism and Kinetics of Mesoporous Silica Nanoparticles by in Situ Small Angle X-Ray Scattering. Langmuir 31:8478–8487

    Article  Google Scholar 

  55. Yokoi T, Sakamoto Y, Terasaki O, Kubota Y, Okubo T, Tatsumi T (2006) Periodic arrangement of silica nanospheres assisted by amino acids. J Am Chem Soc 128:13664–13665

    Article  Google Scholar 

  56. Guo CC, Holland GP (2014) Investigating lysine adsorption on fumed silica nanoparticles. J Phys Chem C 118:25792–25801

    Article  Google Scholar 

  57. Li XY, Du X, He JH (2010) Self-cleaning antireflective coatings assembled from peculiar mesoporous silica nanoparticles. Langmuir 26:13528–13534

    Article  Google Scholar 

  58. Cho JH, Hong JK, Char K, Caruso F (2006) Nanoporous block copolymer micelle/micelle multilayer films with dual optical properties. J Am Chem Soc 128:9935–9942

    Article  Google Scholar 

  59. Li XY, He JH (2013) Synthesis of raspberry-like SiO2-TiO2 nanoparticles toward antireflective and self-cleaning coatings. ACS Appl Mater Interfaces 5:5282–5290

    Article  Google Scholar 

  60. Bico J, Tordeux C, Quéré D (2001) Rough wetting. Europhys Lett 52:214–220

    Article  Google Scholar 

  61. Courbin L, Denieul E, Dressaire E, Roper M, Ajdari A, Stone HA (2007) Imbibition by polygonal spreading on microdecorated surfaces. Nat Mater 6:661–664

    Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful to the financial aid from the National Natural Science Foundation of China (Grant No. 21104016).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to **ying Li.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 3854 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, X., Shi, B., Chaikittisilp, W. et al. A general method to synthesize a family of mesoporous silica nanoparticles less than 100 nm and their applications in anti-reflective/fogging coating. J Mater Sci 51, 6192–6206 (2016). https://doi.org/10.1007/s10853-016-9916-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9916-5

Keywords

Navigation