Log in

Investigation the inclusion complexes of valsartan with polysaccharide arabinogalactan from larch Larix sibirica and (2-hydroxypropyl)-β-cyclodextrin: preparation, characterization and physicochemical properties

  • Original Article
  • Published:
Journal of Inclusion Phenomena and Macrocyclic Chemistry Aims and scope Submit manuscript

Abstract

Valsartan is an efficacious blood pressure-lowering active pharmaceutical ingredient with highly selective antagonist of angiotensin II (type 1-receptor subtype). However, its pharmaceutical application is limited by the low oral bioavailability (~23 %), which is resulted from hydrophobic nature and poor aqueous solubility. In this study, two inclusion complexes of valsartan has been environmental-friendly synthesized using VM-1 roll mill to improve the poor oral bioavailability of valsartan by increasing its water solubility. Polysaccharide arabinogalactan from larch Larix sibirica (AG) and (2-hydroxypropyl)-β-cyclodextrin (HP-β-CD) were separately used as branched or truncated-cone inclusion carriers for valsartan. The synthesized complexes were characterized by NMR relaxation technique, DSC and powder X-ray diffraction pattern. Results showed a shorten T2 relaxation time, disappearance of valsartan endothermic peak and significant variations in X-ray pattern, indicating the formation of complexes being inclusion. In further study, physicochemical properties of valsartan and its mechanical treated complexes were investigated both in aqueous solutions and in solid state. It was found both of the two inclusion complexes successfully improved the solubility of valsartan (Valsartan/AG inclusion complex increased from 0.24 to 0.42 g L−1; Valsartan/HP-β-CD inclusion complex increased from 0.24 to 0.82 g L−1, +37 °C). On the other hand, the rapid storage test showed the inclusion formation of valsartan kept a similar stability as its pure form (+40 °C for 2 months). Taking into account of above results, it is concluded the two synthesized inclusion complexes are promising to improve the bioavailability of valsartan with a better solubility and without changing its stability.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Alavijeh, M.S., Chishty, M., Qaiser, M.Z., Palmer, A.M.: Drug metabolism and pharmacokinetics, the blood-brain barrier, and central nervous system drug discovery. Neurorx. J. Am. Soc. Exp. Neuro Ther. 2, 554–571 (2005)

    Google Scholar 

  2. Yu, L.X., Amidon, G.L., Polli, J.E., et al.: Biopharmaceutics classification system: the scientific basis for biowaiver extensions. Pharm. Res. 19, 921–925 (2002)

    Article  CAS  Google Scholar 

  3. Shende, P.K., Gaud, R.S., Bakal, R., Patil, D.: Effect of inclusion complexation of meloxicam with β-cyclodextrin and β-cyclodextrin-based nanosponges on solubility, in vitro release and stability studies. Colloids Surf. B 136, 105–110 (2015)

    Article  CAS  Google Scholar 

  4. Loftsson, T., Hreinsdóttir, D., Másson, M.: Evaluation of cyclodextrin solubilization of drugs. Int. J. Pharm. 302, 18–28 (2005)

    Article  CAS  Google Scholar 

  5. Savic, I.M., Nikolic, V.D., Savic-Gajic, I., et al.: Investigation of properties and structural characterization of the quercetin inclusion complex with (2-hydroxypropyl)-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 82, 383–394 (2015)

    Article  CAS  Google Scholar 

  6. Tačić, A., Savić, I., Nikolić, V., Savić, I., Ilić-Stojanović, S., Ilić, D., Petrović, S., Popsavin, M., Kapor, A.: Inclusion complexes of sulfanilamide with β-cyclodextrin and 2-hydroxypropyl-β-cyclodextrin. J. Incl. Phenom. Macrocycl. Chem. 80, 113–124 (2014)

    Article  Google Scholar 

  7. Chistyachenko, Y.S., Dushkin, A.V., Polyakov, N.E., et al.: Polysaccharide arabinogalactan from larch Larix sibirica as carrier for molecules of salicylic and acetylsalicylic acid: preparation, physicochemical and pharmacological study. Drug. Deliv. 22, 400–407 (2015)

    Article  CAS  Google Scholar 

  8. Semcheddine, F., Guissi, N.E.I., Liu, X.Y., et al.: Effects of the preparation method on the formation of true nimodipine SBE-β-CD/HP-β-CD inclusion complexes and their dissolution rates enhancement. AAPS. Pharmscitech. 16, 704–715 (2015)

    Article  CAS  Google Scholar 

  9. Ghosh, A., Biswas, S., Ghosh, T.: Preparation and evaluation of silymarin β-cyclodextrin molecular inclusion complexes. J. Young Pharm. 3, 205–210 (2011)

    Article  CAS  Google Scholar 

  10. Ramesh, C.N., Bhuvaneswara, R.C., Balakrishnan, M., Chandra Sekhar, K.B.: Preparation and characterization of pioglitazone hcl solid inclusion complex—an solubility enhancement technique. Int. J. Biopharm. 5, 180–183 (2014)

    Google Scholar 

  11. Delori, A., Friščić, T., Jones, W.: The role of mechanochemistry and supramolecular design in the development of pharmaceutical materials. CrystEngComm 14, 2350–2362 (2012)

    Article  CAS  Google Scholar 

  12. Dushkin, A.V.: Potential of mechanochemical technology in organic synthesis and synthesis of new materials. Chem. Sustain. Dev. 12, 251–273 (2004)

    CAS  Google Scholar 

  13. Fujio, O.: Mechanochemistry of polymers and its applications. Nippon Gomu Kyokaishi. 42, 295–304 (1969)

    Article  Google Scholar 

  14. Aresta, M., Dibenedetto, A., Pastore, T.: Mechanochemistry: an old technology with new applications to environmental issues. Decontamination of polychlorobiphenyl-contaminated soil by high-energy milling in the solid state with ternary hydrides. In: Lichtfouse, E., Schwarzbauer, J., Robert, D. (eds.) Environmental Chemistry: Green Chemistry and Pollutants in Ecosystems, pp. 553–559. Springer, Berlin (2005)

    Chapter  Google Scholar 

  15. James, S.L., Adams, C.J., Bolm, C., et al.: Mechanochemistry: opportunities for new and cleaner synthesis. Chem. Soc. Rev. 41, 413–447 (2012)

    Article  CAS  Google Scholar 

  16. Dushkin, A.V.: Mechanochemical synthesis of organic compounds and rapidly soluble materials. In: Sopicka-Lizer, M. (ed.) High-energy Ball Milling, pp. 224–247. Woodhead Publishing Limited, Oxford (2010)

    Chapter  Google Scholar 

  17. Dushkin, A.V., Tolstikova, T.G., Khvostov, M.V., Tolstikov, G.A.: Complexes of polysaccharides and glycyrrhizic acid with drug molecules, mechanochemical synthesis and pharmacological activity. In: Karunaratn, D.N. (ed.) The Complex World of Polysacchraids, pp. 573–602. Intech Publisher, Oxford (2012)

    Google Scholar 

  18. Shakhtshneider, T.P., Vasilchenko, M.A., Politov, A.A., Boldyrev, V.V.: Mechanochemical preparation of drug-carrier solid dispersions. J. Therm. Anal. 48, 491–501 (1997)

    Article  CAS  Google Scholar 

  19. Criscione, L., Gasparo, M., Buhlmayer, P., et al.: Pharmacological profile of valsartan: a potent, orally active, nonpeptide antagonist of the angiotensin II AT1-receptor subtype. Br. J. Pharmacol. 110, 761–771 (1993)

    Article  CAS  Google Scholar 

  20. Flesch, G., Lloyd, M.P.: Absolute bioavailability and pharmacokinetics of valsartan, an angiotensin II receptor antagonist, in man. Eur. J. Clin. Pharmacol. 52, 115–120 (1997)

    Article  CAS  Google Scholar 

  21. Raja Rajeswari, K., Abbulu, K., Sudhakar, M.: Development, characterization and solubility study of solid dispersion of valsartan. J. Chem. Pharm. Res. 3, 180–187 (2011)

    CAS  Google Scholar 

  22. Mahapatra, A.K., Murthy, P.N., Biswal, S., Mahapatra, A.P.K., Pradhan, S.P.: Dissolution enhancement and physicochemical characterization of valsartan in solid dispersions with β-CD, HP-β-CD, and PVP K-30. Dissolution Technol. 18, 39–45 (2011)

    Article  CAS  Google Scholar 

  23. Kshirsagar, S.J., Bhalekar, M.R., Madgulkar, A.R., Sable, P.N., Gupta, S.R.: Dissolution improvement of poorly water soluble drug valsartan and improving flow properties of solid dispersion. Lat. Am. J. Pharm. 29, 393–400 (2010)

    CAS  Google Scholar 

  24. Kelly, G.S.: Larch arabinogalactan: clinical relevance of a novel immune-enhancing polysaccharide. Altern. Med. Rev. 4, 96–103 (1999)

    CAS  Google Scholar 

  25. Monograph.: Larch arabinogalactan. Alern. Med. Rev. 5, 463–466 (2000)

  26. Zhang, Y., Meng, F.C., Cui, Y.L., Song, Y.F.: Enhancing effect of hydroxypropyl-β-cyclodextrin on the intestinal absorption process of genipin. J. Agric. Food Chem. 59, 10919–10926 (2011)

    Article  CAS  Google Scholar 

  27. Davis, M.E., Brewster, M.E.: Cyclodextrin-based pharmaceutics: past, present and future. Nat. Rev. Drug. Discov. 12, 1023–1035 (2004)

    Article  Google Scholar 

  28. Tian, J., Yao, Y., Shen, S., Zheng, X., Liu, C., Han, X.: Effect of roller mill and planetary ball mill on starch damage of wheat with different hardness. J. Henan Univ. Technol. 36, 8–15 (2015)

    CAS  Google Scholar 

  29. Mccormick, P.G., Ding, J., Miao, W.F., Street, R.: Process for the production of ultrafine particles. United State Patent. No. 6203768 B1[P] (2001)

  30. Kubota, T., Takaya, H., Hasumi, M., et al.: Method for producing single nucleus detergent particles. United State Patent. No 6602846. B1[P] (2003)

  31. Dushkin, A.V., Chistyachenko, Y.S., Tolstikova, T.G., et al.: Pharmacological and physicochemical properties of mechanochemically synthesized supramolecular complexes of acetylsalicylic acid and polysaccharide arabinogalactan from larches Larix sibirica and Larix Gmelinii. Dokl. Biochem. Biophys. 451, 180–182 (2013)

    Article  CAS  Google Scholar 

  32. Emsley, J.W., Freeney, J., Sutcliffe, L.H.: High Resolution Nuclear Magnetic Resonance Spectroscopy. Pergamon press, Oxford (1965)

    Google Scholar 

  33. Popova, M.V., Tchernyshev, Y.S., Michel, D.: NMR investigation of the short-chain ionic. Langmuir 20, 632–636 (2004)

    Article  CAS  Google Scholar 

  34. Higuchi, T., Connors, K.A.: Phase solubility techniques. In: Reilly, C.N. (ed.) Advances in Analytical Chemistry and Instrumentation, pp. 117–212. Wiley-Interscience, New York (1965)

    Google Scholar 

  35. Brewster, M.E., Loftsson, T.: Cyclodextrins as pharmaceutical solubilizers. Adv. Drug Deliv. Rev. 59, 645–666 (2007)

    Article  CAS  Google Scholar 

  36. Koptyaeva, E.I., Fatykhov, A.A., Ivanov, S.P., et al.: Solid-phase mechanochemical synthesis of arabinogalactan and chlorsulfuron complexes. Russ. J. Appl. Chem. 85, 788–793 (2012)

    Article  CAS  Google Scholar 

  37. Bilensoy, E., Gürkaynak, O., Doğan, A.L., et al.: Safety and efficacy of amphiphilic beta-cyclodextrin nanoparticles for paclitaxel delivery. Int. J. Pharm. 347, 163–170 (2008)

    Article  CAS  Google Scholar 

  38. Sallas, F., Darcy, R.: Amphiphilic cyclodextrins-advances in synthesis and supramolecular chemistry. Eur. J. Org. Chem. 2008, 957–969 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Weike Su.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Dushkin, A.V., Chistyachenko, Y.S. et al. Investigation the inclusion complexes of valsartan with polysaccharide arabinogalactan from larch Larix sibirica and (2-hydroxypropyl)-β-cyclodextrin: preparation, characterization and physicochemical properties. J Incl Phenom Macrocycl Chem 85, 93–104 (2016). https://doi.org/10.1007/s10847-016-0608-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10847-016-0608-1

Keywords

Navigation