Log in

Comparative study for effect of Ti, Nb and W incorporation on the electronic and optical properties of pristine hafnia (m-HfO2): DFT theoretical prospective

  • Published:
Journal of Computational Electronics Aims and scope Submit manuscript

Abstract

First-principles calculations using the Hubbard approach (DFT + U) with PBEsol correlation were performed to compare the effects of incorporating 3d, 4d, and 5d metal atoms on the electronic and optical properties of m-HfO2. Incorporating metal atoms in the HfO2 crystal structure shifted the band gap edges and lowered the conduction band minimum, reducing the band gap as follows: 5.24 eV for HfO2, 3.26 eV for HfO2:Ti, 1.12 eV for HfO2:W, and 0.92 eV for HfO2:Nb. Total and partial density of states calculations showed that the valence band maximum of pristine HfO2 is mainly constructed from O 2p states, while the conduction band minimum is mainly from Hf 4d states. For doped crystals, the conduction band minimum is mainly from 3d states of Ti, 4d states of Nb, and 5d states of W. For pristine HfO2, the calculated dielectric constant, reflectivity and refractive index match available experimental and theoretical data. For doped systems, incorporating Nb (4d metal) and W (5d metal) had similar effects on the electronic and optical properties of HfO2, differing more from incorporating Ti (3d metal). HfO2 absorption roughly doubled upon Ti atom insertion (HfO2:Ti). Based on the results of this study, we would like to emphasize that these results provide a solid theoretical starting point that motivates further experimental studies into the application potential of these doped metal oxide systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The datasets generated and/or analyzed during the current study are available from the corresponding author on reasonable request.

References

  1. Sayan, S., Emge, T., Garfunkel, E., Zhao, X., Wielunski, L., Bartynski, R.A., Vanderbilt, D., Suehle, J.S., Suzer, S., Banaszak-Holl, M.: Band alignment issues related to HfO2/SiO2/p-Si gate stacks. J. Appl. Phys. 96(12), 7485–7491 (2004)

    Article  Google Scholar 

  2. Figueiredo, J., Thomas, C.J., Deleersnijder, E., Lambrechts, J., Baird, A.H., Connolly, S.R., Hanert, E.: Global warming decreases connectivity among coral populations. Nat. Clim. Chang. 12(1), 83–87 (2022)

    Article  Google Scholar 

  3. Gambhir, A., George, M., McJeon, H., Arnell, N.W., Bernie, D., Mittal, S., Köberle, A.C., Lowe, J., Rogelj, J., Monteith, S.: Near-term transition and longer-term physical climate risks of greenhouse gas emissions pathways. Nat. Clim. Chang. 12(1), 88–96 (2022)

    Article  Google Scholar 

  4. Stewart, A.L.: Warming spins up the Southern Ocean. Nat. Clim. Chang. 11(12), 1022–1024 (2021)

    Article  Google Scholar 

  5. Wang, W., Tade, M.O., Shao, Z.: Research progress of perovskite materials in photocatalysis-and photovoltaics-related energy conversion and environmental treatment. Chem. Soc. Rev. 44(15), 5371–5408 (2015)

    Article  Google Scholar 

  6. **ang, Q., Cheng, B., Yu, J.: Graphene-based photocatalysts for solar-fuel generation. Angew. Chem. Int. Ed. 54(39), 11350–11366 (2015)

    Article  Google Scholar 

  7. Khattab, E.S.R., Abd El Rehim, S.S., Hassan, W.M., El-Shazly, T.S.: Band structure engineering and optical properties of pristine and doped monoclinic zirconia (m-ZrO2): density functional theory theoretical prospective. ACS Omega 6(44), 30061–30068 (2021)

    Article  Google Scholar 

  8. Nashed, R., Szymanski, P., El-Sayed, M.A., Allam, N.K.: Self-Assembled nanostructured photoanodes with staggered bandgap for efficient solar energy conversion. ACS Nano 8(5), 4915–4923 (2014)

    Article  Google Scholar 

  9. El-Shazly, T.S., Hassan, W.M., Rahim, S.T.A. and Allam, N.K., 2015. Unravelling the interplay of dopant concentration and band structure engineering of monoclinic niobium pentoxide: a model photoanode for water splitting. Int. J. Hydrogen Energy, 40(40), 13867–13875.

  10. Amer, A.W., El-Sayed, M.A., Allam, N.K.: Tuning the photoactivity of zirconia nanotubes-based photoanodes via ultrathin layers of ZrN: an effective approach toward visible-light water splitting. J. Phys. Chem. C 120(13), 7025–7032 (2016)

    Article  Google Scholar 

  11. El-Shazly, T.S., Hassan, W.M., Abd El Rehim, S.S., Allam, N.K.: Optical and electronic properties of niobium oxynitrides with various N/O ratios: insights from first-principles calculations. J. Photonics Energy 8(2), 026501–026501 (2018)

    Article  Google Scholar 

  12. Awad, N.K., Ashour, E.A., Allam, N.K.: Recent advances in the use of metal oxide-based photocathodes for solar fuel production. J. Renew. Sustain. Energy 6(2), 022702 (2014)

    Article  Google Scholar 

  13. El-Shazly, T.S., Hassan, W.M., Rehim, S.S.A., Allam, N.K.: DFT insights into the electronic and optical properties of fluorine-doped monoclinic niobium pentoxide (B-Nb 2 O 5: F). Appl. Phys. A 122, 1–7 (2016)

    Article  Google Scholar 

  14. EL-Shazly, T.S., Khedr, G.E., Abd El Rehim, S.S.: Unraveling the effect of sulfur do** into electronic and optical performance of monoclinic hafnium dioxide (m-HfO2: S): an (DFT+ U) insights report. Appl. Phys. A 128(6), 489 (2022)

    Article  Google Scholar 

  15. Kim, K., Choi, Y. J., Kim, H. J.: Effect of transition metal do** on the electrical properties of HfO2 thin films. J. Appl. Phys. 117(4), 044103–044103–5 (2015).

  16. Islam, M.M., Khan, M.H.R., Ahmed, S.: Electronic and optical properties of transition metal-doped HfO2 for solar cell applications. J. Mater. Sci.: Mater. Electron. 31(14), 11591–11601 (2020)

    Google Scholar 

  17. Bon, C.Y., Kim, D., Lee, K., Choi, S., Park, I., Yoo, S.I.: Enhanced electrical properties of Nb-doped a-HfO2 dielectric films for MIM capacitors. AIP Adv. 10(11), 115117 (2020)

    Article  Google Scholar 

  18. Kühnel, K., Czernohorsky, M., Mart, C., Weinreich, W.: High-density energy storage in Si-doped hafnium oxide thin films on area-enhanced substrates. J. Vac. Sci. Technol., B: Nanotechnol. Microelectron.: Mater., Process., Meas., Phenom. 37(2), 021401 (2019)

    Google Scholar 

  19. Long, B.M., Mandal, S., Livecchi, J., Jha, R.: Effects of Mg-do** on HfO2-based ReRAM device switching characteristics. IEEE Electron Device Lett. 34(10), 1247–1249 (2013)

    Article  Google Scholar 

  20. Shen, Y., Zhang, Z., Zhang, Q., Wei, F., Yin, H., Wei, Q., Men, K.: A Gd-doped HfO2 single film for a charge trap** memory device with a large memory window under a low voltage. RSC Adv. 10(13), 7812–7816 (2020)

    Article  Google Scholar 

  21. Pokhriyal, S. and Biswas, S.: Effects of Ti do** on the dielectric properties of HfO2 nanoparticles. In: AIP Conference Proceedings (Vol. 1728, No. 1, p. 020457). AIP Publishing LLC, Melville (2016).

  22. Lee, C.K., Cho, E., Lee, H.S., Hwang, C.S., Han, S.: First-principles study on do** and phase stability of HfO 2. Phys. Rev. B 78(1), 012102 (2008)

    Article  Google Scholar 

  23. Sultana, R., Islam, K., Rakshit, A., Mukherjee, M., Chakraborty, S.: Effect of Zr do** and lattice oxygen release on the resistive switching properties of ZrxHf1− xO2-based metal-oxide-semiconductor devices. Microelectron. Eng. 216, 111099 (2019)

    Article  Google Scholar 

  24. Park, M.H., Schenk, T., Fancher, C.M., Grimley, E.D., Zhou, C., Richter, C., LeBeau, J.M., Jones, J.L., Mikolajick, T., Schroeder, U.: A comprehensive study on the structural evolution of HfO 2 thin films doped with various dopants. J. Mater. Chem. C 5(19), 4677–4690 (2017)

    Article  Google Scholar 

  25. Park, H., Lee, S.H., Chang, K.J.: First-principles study of the electronic and optical properties of HfO2 with defects. J. Alloy. Compd. 509(3), 939–944 (2011)

    Google Scholar 

  26. Nolan, M., Janotti, A., Van de Walle, C. G.: Hybrid functional studies of the native defects and impurities in hafnia.J. Appl. Phys. 109(11), 113707–113707–10 (2011).

  27. Padilha, A.C.M., McKenna, K.P.: First principles investigation of Y2O3-doped HfO2. J. Appl. Phys. 126(8), 084105 (2019)

    Article  Google Scholar 

  28. Chen, W., Sun, Q.Q., Ding, S.J., Zhang, D.W., Wang, L.K.: First principles calculations of oxygen vacancy passivation by fluorine in hafnium oxide. Appl. Phys. Lett. 89(15), 152904 (2006)

    Article  Google Scholar 

  29. Scopel, W.L., Da Silva, A.J., Orellana, W., Fazzio, A.: Comparative study of defect energetics in HfO2 and SiO2. Appl. Phys. Lett. 84(9), 1492–1494 (2004)

    Article  Google Scholar 

  30. Robertson, J., Grundmann, M.: Properties of hafnium oxide and HfO2-based thin films. J. Mater. Sci. 41(8), 2135–2147 (2006)

    Google Scholar 

  31. Houssa, M., Zhao, W., Dimoulas, A.: First-principles study of the electronic structure of HfO2 and HfO2-based interfaces. J. Appl. Phys. 102(7), 074112–074112–8 (2007).

  32. Kim, D., Kim, Y.S., Chang, K.J.: Optical properties of HfO2 and HfO2-based thin films. J. Appl. Phys. 96(11), 6616–6622 (2004)

    Google Scholar 

  33. Jordan-Sweet, J.L., Dutton, R.W., Robertson, J.: Electronic properties of HfO2 and HfSiOx from first principles. J. Appl. Phys. 95(5), 2528–2535 (2004)

    Google Scholar 

  34. Perdew, J.P., Burke, K., Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996)

    Article  Google Scholar 

  35. Hammer, B.H.L.B., Hansen, L.B., Nørskov, J.K.: Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Phys. Rev. B 59(11), 7413 (1999)

    Article  Google Scholar 

  36. Anisimov, V.I., Aryasetiawan, F., Lichtenstein, A.I.: First-principles calculations of the electronic structure and spectra of strongly correlated systems: the LDA+ U method. J. Phys.: Condens. Matter 9(4), 767 (1997)

    Google Scholar 

  37. Dudarev, S.L., Botton, G.A., Savrasov, S.Y., Humphreys, C.J., Sutton, A.P.: Electron-energy-loss spectra and the structural stability of nickel oxide: an LSDA+ U study. Phys. Rev. B 57(3), 1505 (1998)

    Article  Google Scholar 

  38. Perdew, J.P., Ruzsinszky, A., Csonka, G.I., Vydrov, O.A., Scuseria, G.E., Constantin, L.A., Zhou, X., Burke, K.: Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100(13), 136406 (2008)

    Article  Google Scholar 

  39. Pérez-Walton, S., Valencia-Balvín, C., Dalpian, G.M., Osorio-Guillén, J.M.: Electronic, dielectric, and optical properties of the B phase of niobium pentoxide and tantalum pentoxide by first-principles calculations. Phys. Status Solidi (b) 250(8), 1644–1650 (2013)

    Article  Google Scholar 

  40. Pandey, S.C., Xu, X., Williamson, I., Nelson, E.B., Li, L.: Electronic and vibrational properties of transition metal-oxides: comparison of GGA, GGA+ U, and hybrid approaches. Chem. Phys. Lett. 669, 1–8 (2017)

    Article  Google Scholar 

  41. Kirchner-Hall, N.E., Zhao, W., **ong, Y., Timrov, I., Dabo, I.: Extensive benchmarking of DFT+ U calculations for predicting band gaps. Appl. Sci. 11(5), 2395 (2021)

    Article  Google Scholar 

  42. Çİftçİ, Y., Ergun, A., Colakoglu, K., Deligoz, E.: First principles LDA+ U and GGA+ U study of HfO2: dependence on the effective U parameter. Gazi University J. Sci. 27(1), 627–636 (2014)

    Google Scholar 

  43. Tolba, S.A., Allam, N.K.: Computational design of novel hydrogen-doped, oxygen-deficient monoclinic zirconia with excellent optical absorption and electronic properties. Sci. Rep. 9(1), 10159 (2019)

    Article  Google Scholar 

  44. Li, J., Meng, S., Niu, J., Lu, H.: Electronic structures and optical properties of monoclinic ZrO 2 studied by first-principles local density approximation+ U approach. J. Adv. Ceram. 6, 43–49 (2017)

    Article  Google Scholar 

  45. Segall, M.D., Lindan, P.J., Probert, M.A., Pickard, C.J., Hasnip, P.J., Clark, S.J., Payne, M.C.: First-principles simulation: ideas, illustrations and the CASTEP code. J. Phys.: Condens. Matter 14(11), 2717 (2002)

    Google Scholar 

  46. Payne, M.C., Teter, M.P., Allan, D.C., Arias, T.A., Joannopoulos, A.J.: Iterative minimization techniques for ab initio total-energy calculations: molecular dynamics and conjugate gradients. Rev. Mod. Phys. 64(4), 1045 (1992)

    Article  Google Scholar 

  47. Vanderbilt, D.: Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 41(11), 7892 (1990)

    Article  Google Scholar 

  48. Monkhorst, H.J., Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976)

    Article  MathSciNet  Google Scholar 

  49. Tran, F., Blaha, P.: Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102(22), 226401 (2009)

    Article  Google Scholar 

  50. Jiang, H., Gomez-Abal, R.I., Rinke, P., Scheffler, M.: Electronic band structure of zirconia and hafnia polymorphs from the G W perspective. Phys. Rev. B 81(8), 085119 (2010)

    Article  Google Scholar 

  51. Ondračka, P., Holec, D., Nečas, D., Zajíčková, L.: Accurate prediction of band gaps and optical properties of HfO2. J. Phys. D Appl. Phys. 49(39), 395301 (2016)

    Article  Google Scholar 

  52. Besler, B.H., Merz, K.M., Jr., Kollman, P.A.: Atomic charges derived from semiempirical methods. J. Comput. Chem. 11(4), 431–439 (1990)

    Article  Google Scholar 

  53. Thompson, J.D., **dos, J.D., Sonbuchner, T.M., Cramer, C.J., Truhlar, D.G.: More reliable partial atomic charges when using diffuse basis sets. PhysChemComm 5(18), 117–134 (2002)

    Article  Google Scholar 

  54. Hirshfeld, F.L.: Bonded-atom fragments for describing molecular charge densities. Theoret. Chim. Acta 44, 129–138 (1977)

    Article  Google Scholar 

  55. Mulliken, R.S.: Electronic population analysis on LCAO–MO molecular wave functions. I. J. Chem. Phys. 23(10), 1833–1840 (1955)

    Article  Google Scholar 

  56. Perdew, J.P., Ernzerhof, M., Burke, K.: Rationale for mixing exact exchange with density functional approximations. J. Chem. Phys. 105(22), 9982–9985 (1996)

    Article  Google Scholar 

  57. Heyd, J., Scuseria, G.E., Ernzerhof, M.: Hybrid functionals based on a screened Coulomb potential. J. Chem. Phys. 118(18), 8207–8215 (2003)

    Article  Google Scholar 

  58. Adam, J., Rogers, M.D.: The crystal structure of ZrO2 and HfO2. Acta Crystallogr. A 12(11), 951–951 (1959)

    Article  Google Scholar 

  59. Kang, J., Lee, E.C., Chang, K.J.: First-principles study of the structural phase transformation of hafnia under pressure. Phys. Rev. B 68(5), 054106 (2003)

    Article  Google Scholar 

  60. Zhao, X., Vanderbilt, D.: First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys. Rev. B 65(23), 233106 (2002)

    Article  Google Scholar 

  61. Sundaram, R., et al.: Effect of Ti do** on the band gap of ZnO nanoparticles. Mater. Chem. Phys. 118(1), 119–122 (2009)

    Google Scholar 

  62. Lee, Chan Yeol, et al. First-principles study of the electronic structures of Nb-doped TiO2. J. Phys. Chem. C. 114(41), 17460–17468 (2010).

  63. Körner, E., Fattakhova-Rohlfing, A., Ziegler, C.: Effect of aluminium do** on the electronic structure and optical properties of anatase TiO2: a first principles study. Phys. Status Solidi (b) 245(11), 2546–2552 (2008)

    Google Scholar 

  64. Saha, S., Sinha, T.P., Mookerjee, A.: Electronic structure, chemical bonding, and optical properties of paraelectric BaTiO 3. Phys. Rev. B 62(13), 8828 (2000)

    Article  Google Scholar 

  65. Al-Aqtash, N., Apostol, F., Mei, W., Sabirianov, R.F.: Electronic and optical properties of TaO1_xN1 + x-based alloys. J. Solid State Chem. 198, 337 (2012)

    Article  Google Scholar 

  66. Camagni, P., Samoggia, G., Sangaletti, L., Parmigiani, F., Zema, N.: X-ray-photoemission spectroscopy and optical reflectivity of yttrium-stabilized zirconia. Phys. Rev. B 50(7), 4292 (1994)

    Article  Google Scholar 

  67. Lim, S.G., Kriventsov, S., Jackson, T.N., Haeni, J.H., Schlom, D.G., Balbashov, A.M., Uecker, R., Reiche, P., Freeouf, J.L., Lucovsky, G.: Dielectric functions and optical bandgaps of high-K dielectrics for metal-oxide-semiconductor field-effect transistors by far ultraviolet spectroscopic ellipsometry. J. Appl. Phys. 91(7), 4500–4505 (2002)

    Article  Google Scholar 

  68. Nguyen, N.V., Davydov, A.V., Chandler-Horowitz, D., Frank, M.M.: Sub-bandgap defect states in polycrystalline hafnium oxide and their suppression by admixture of silicon. Appl. Phys. Lett. 87(19), 192903 (2005)

    Article  Google Scholar 

  69. Bersch, E., Rangan, S., Bartynski, R.A., Garfunkel, E., Vescovo, E.: Band offsets of ultrathin high-κ oxide films with Si. Phys. Rev. B 78(8), 085114 (2008)

    Article  Google Scholar 

  70. Delarmelina, M., Quesne, M.G., Catlow, C.R.A.: Modelling the bulk properties of ambient pressure polymorphs of zirconia. Phys. Chem. Chem. Phys. 22(12), 6660–6676 (2020)

    Article  Google Scholar 

Download references

Acknowledgements

Authors of this work would like to thank King Abdulaziz University in Saudi Arabia for the technical support of this research.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

E–SK (corresponding author) contributed to DFT calculations, manuscript writing, results interpretation, data analysis, drawing and modifying figures and tables, also he was responsible for article submission and contacting with journal reviewers and editors. TE-S played a role in result interpretation, introduction writing, results improving, and sha** the final form. WH, MI and SSAER participated in the final review and incorporated the modifications proposed by the journal.

Corresponding author

Correspondence to El-Sayed R. Khattab.

Ethics declarations

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Dedication: We would like to dedicate this work to the soul of Professor Ahmed M. El-Nahas, professor of quantum chemistry, Menoufia University.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khattab, ES.R., Hassan, W.M.I., El-Shazly, T.S. et al. Comparative study for effect of Ti, Nb and W incorporation on the electronic and optical properties of pristine hafnia (m-HfO2): DFT theoretical prospective. J Comput Electron 22, 1615–1625 (2023). https://doi.org/10.1007/s10825-023-02103-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10825-023-02103-y

Keywords

Navigation