Log in

Performance of Foam Agents on Pool Fires at High Altitudes

  • Published:
Fire Technology Aims and scope Submit manuscript

Abstract

The physical and chemical properties of foams change based on atmospheric pressure, so estimating the effect of pressure on the efficiency of foamite has important implications for extinguishing fires in high-altitude regions like the plateau in Sichuan province, China. In this study, foam expansion rate, drainage time, burn-back time, and fire extinguishing efficiency of three kinds of foamite are examined through pool fires in field experiments in plateau areas and in laboratory chambers. Agents investigated are fluorine-protein foam (FP), aqueous film-forming foam (AFFF), and alcohol-resistant foam (S/AR). The results show that increases in altitude led to reduced performance across all measured performance parameters for all three kinds of foam extinguishing agents, and that AFFF still performs better than both (S/AR) and (FP) in high altitude. The study helps with the selection of foamite for pool fires in high-altitude regions and improves the fire protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

Abbreviations

FP:

Fluorine-protein foam extinguishing agent

AFFF:

Aqueous film-forming foam extinguishing agent

S/AR:

Alcohol-resistant foam extinguishing agent

FE:

Field experiment

m erf :

The mass of the foam, g

E :

The expansion rate of foam

σ :

The surface tension

LSE:

Laboratory-scale experiment

EF:

Expansion rate of foam

DT:

Drainage time

BT:

Burn-back time

ρ :

The density of the foam

t dt :

25% Drainage time, s

γ :

The boundary curvature

References

  1. Yang X, Qiu X, Fang Y et al (2019) Spatial variation of the relationship between transport accessibility and the level of economic development in Qinghai-Tibet Plateau, China[J]. J Mt Sci 16(8):1883–1900

    Article  Google Scholar 

  2. Wang ZP, Macabiau C, Zhang J et al (2014) Prediction and analysis of GBAS integrity monitoring availability at LinZhi airport[J]. GPS Solutions 18(1):27–40

    Article  Google Scholar 

  3. Zhen J, Lu J, Huang G et al (2017) Groundwater source heat pump application in the heating system of Tibet Plateau airport[J]. Energy and Buildings 136:33–42

    Article  Google Scholar 

  4. Shi Z, Xu L, Yang X et al (2017) Trends in reference evapotranspiration and its attribution over the past 50 years in the Loess Plateau, China: implications for ecological projects and agricultural production[J]. Stoch Env Res Risk Assess 31(1):257–273

    Article  Google Scholar 

  5. Leite RM, Centeno FR (2018) Effect of tank diameter on thermal behavior of gasoline and diesel storage tanks fires[J]. J Hazard Mater 342:544–552

    Article  Google Scholar 

  6. Barua S, Gao X, Pasman H et al (2016) Bayesian network based dynamic operational risk assessment[J]. J Loss Prev Process Ind 41:399–410

    Article  Google Scholar 

  7. Girgin S, Krausmann E (2016) Historical analysis of US onshore hazardous liquid pipeline accidents triggered by natural hazards[J]. J Loss Prev Process Ind 40:578–590

    Article  Google Scholar 

  8. Zarzecki M, Quintiere JG, Lyon RE et al (2013) The effect of pressure and oxygen concentration on the combustion of PMMA[J]. Combust Flame 160(8):1519–1530

    Article  Google Scholar 

  9. Fang J, Tu R, Guan J et al (2011) Influence of low air pressure on combustion characteristics and flame pulsation frequency of pool fires[J]. Fuel 90(8):2760–2766

    Article  Google Scholar 

  10. Tu R, Zeng Y, Fang J et al (2016) Low air pressure effects on burning rates of ethanol and n-heptane pool fires under various feedback mechanisms of heat[J]. Appl Therm Eng 99:545–549

    Article  Google Scholar 

  11. Zhu P, Tao ZX, Li C et al (2019) Experimental study on the burning rates of Ethanol-Gasoline blends pool fires under low ambient pressure[J]. Fuel 252:304–315

    Article  Google Scholar 

  12. Chen M, Liu J, He Y et al (2017) Study of the fire hazards of lithium-ion batteries at different pressures[J]. Appl Therm Eng 125:1061–1074

    Article  Google Scholar 

  13. Fu Y, Lu S, Shi L et al (2018) Ignition and combustion characteristics of lithium ion batteries under low atmospheric pressure[J]. Energy 161:38–45

    Article  Google Scholar 

  14. Ni XM, Li QW, Xu HL et al (2012) Experimental study on fire suppression performance of gas-solid composite powders in Tibet[J]. Zhongguo Anquan Kexue Xuebao 22(11):42–47

    Google Scholar 

  15. Huang X, Wang X, ** X et al (2007) Fire protection of heritage structures: Use of a portable water mist system under high-altitude conditions[J]. J Fire Sci 25(3):217–239

    Article  Google Scholar 

  16. Cai X, Wang XS, Liang TS et al (2010) Experimental study on the effects of low ambient pressure conditions at high altitude on fire suppression with water mist[J]. J Fire Sci 28(5):441–458

    Article  Google Scholar 

  17. Wang P (2015) Application of green surfactants develo** environment friendly foam extinguishing agent[J]. Fire Technol 51(3):503–511

    Article  Google Scholar 

  18. Kim AK, Crampton GP (2012) Evaluation of the fire suppression effectiveness of manually applied compressed-air-foam (CAF) system[J]. Fire Technol 48(3):549–564

    Article  Google Scholar 

  19. Sheng Y, Jiang N, Sun X et al (2018) Experimental study on effect of foam stabilizers on aqueous film-forming foam[J]. Fire Technol 54(1):211–228

    Article  Google Scholar 

  20. Yan Z, Guo Q, Zhu H (2017) Full-scale experiments on fire characteristics of road tunnel at high altitude[J]. Tunn Undergr Space Technol 66:134–146

    Article  Google Scholar 

  21. Laundess AJ, Rayson MS, Dlugogorski BZ et al (2011) Small-scale test protocol for firefighting foams DEF(AUST)5706: effect of bubble size distribution and expansion ratio[J]. Fire Technol 47(1):149–162

    Article  Google Scholar 

  22. Sheng Y, Jiang N, Lu S et al (2020) Study of environmental-friendly firefighting foam based on the mixture of hydrocarbon and silicone surfactants[J]. Fire Technol 56(3):1059–1075

    Article  Google Scholar 

  23. Kirwan ML, Megonigal JP (2013) Tidal wetland stability in the face of human impacts and sea-level rise[J]. Nature 504(7478):53

    Article  Google Scholar 

  24. ISO7203–1–2011. Fire extinguishing media - Foam concentrates - Part 1: Specification for low-expansion foam concentrates for top application to waterimmiscible liquids.

  25. Place BJ, Field JA (2012) Identification of novel fluorochemicals in aqueous film-forming foams used by the US military[J]. Environ Sci Technol 46(13):7120–7127

    Article  Google Scholar 

  26. Nguyen AV (2002) Liquid drainage in single Plateau borders of foam[J]. J Colloid Interface Sci 249(1):194–199

    Article  Google Scholar 

  27. Zhou Z, Wang J, Liu J et al (2016) Effect of the ambient pressure on the heat release rates of n-heptane pool fires[J]. J Therm Anal Calorim 126(3):1727–1734

    Article  Google Scholar 

  28. Zhu X, Luo Y, Jia X (2019) Effects of the temperature on surface properties of fluorocarbon surfactant under low pressure [J]. Fire Science and Technology 38(08):1126–1128

    Google Scholar 

  29. Jia X, Bo H, Zhang H (2019) Spreading performance of fluorocarbon surfactants under low pressure [J]. Fire Science and Technology 38(02):263–265

    Google Scholar 

  30. He Y, X, Wang Y, Meng Y. (2019) Study on thermal stability of foam extinguishing agent in low pressure environment. [J]Fire Science and Technology 38(05):671–674

    Google Scholar 

  31. Wei J,L. Study on High-plateau Effect on the Physical and Chemical Properties of Fluorocarbon Surfactant:[D].Guanghan: Civil Aviation Flight University of China,2018

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (51804314), the Natural Science Foundation of Hebei Province (E2018507020), and Science and Technology Research Project of Higher Education in Hebei Province”(QN2020535). The first author thanks the support of and the Key Laboratory Opening Foundation of the Ministry of Public Security in China (KF201810) and “Basic Work Special Project” from Ministry of Public Security of the People's Republic of China (2016GABJC02).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tianwei Zhang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, H., Du, Z., Zhang, T. et al. Performance of Foam Agents on Pool Fires at High Altitudes. Fire Technol 58, 1285–1304 (2022). https://doi.org/10.1007/s10694-021-01188-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10694-021-01188-w

Keywords

Navigation