Log in

Evaluation of fast atmospheric dispersion models in a regular street network

  • Published:
Environmental Fluid Mechanics Aims and scope Submit manuscript

Abstract

The need to balance computational speed and simulation accuracy is a key challenge in designing atmospheric dispersion models that can be used in scenarios where near real-time hazard predictions are needed. This challenge is aggravated in cities, where models need to have some degree of building-awareness, alongside the ability to capture effects of dominant urban flow processes. We use a combination of high-resolution large-eddy simulation (LES) and wind-tunnel data of flow and dispersion in an idealised, equal-height urban canopy to highlight important dispersion processes and evaluate how these are reproduced by representatives of the most prevalent modelling approaches: (1) a Gaussian plume model, (2) a Lagrangian stochastic model and (3) street-network dispersion models. Concentration data from the LES, validated against the wind-tunnel data, were averaged over the volumes of streets in order to provide a high-fidelity reference suitable for evaluating the different models on the same footing. For the particular combination of forcing wind direction and source location studied here, the strongest deviations from the LES reference were associated with mean over-predictions of concentrations by approximately a factor of 2 and with a relative scatter larger than a factor of 4 of the mean, corresponding to cases where the mean plume centreline also deviated significantly from the LES. This was linked to low accuracy of the underlying flow models/parameters that resulted in a misrepresentation of pollutant channelling along streets and of the uneven plume branching observed in intersections. The agreement of model predictions with the LES (which explicitly resolves the turbulent flow and dispersion processes) greatly improved by increasing the accuracy of building-induced modifications of the driving flow field. When provided with a limited set of representative velocity parameters, the comparatively simple street-network models performed equally well or better compared to the Lagrangian model run on full 3D wind fields. The study showed that street-network models capture the dominant building-induced dispersion processes in the canopy layer through parametrisations of horizontal advection and vertical exchange processes at scales of practical interest. At the same time, computational costs and computing times associated with the network approach are ideally suited for emergency-response applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Allen CT, Haupt SE, Young GS (2007) Source characterization with a genetic algorithm-coupled dispersion-backward model incorporating SCIPUFF. J Appl Meteorol Clim 46(3):273–287

    Article  Google Scholar 

  2. Andronopoulos S, Armand P, Baumann-Stanzer K, Herring S, Leitl B, Reison T, Castelli ST (eds) (2012) Background and justification document. COST Action ES1006. University of Hamburg, Germany

  3. Antonioni G, Burkhart S, Burman J, Dejoan A, Fusco A, Gaasbeek R, Gjesdal T, Jäppinen A, Riikonen K, Morra P, Parmhed O, Santiago J (2012) Comparison of CFD and operational dispersion models in an urban-like environment. Atmos Environ 47:365–372

    Article  Google Scholar 

  4. Baumann-Stanzer K, Castelli ST, Stenzel S (eds) (2015) Model evaluation case studies. COST Action ES1006. University of Hamburg, Germany

  5. Belcher SE (2005) Mixing and transport in urban areas. Philos Trans R Soc A 363(1837):2947–2968

    Article  Google Scholar 

  6. Belcher SE, Coceal O, Goulart EV, Rudd AC, Robins AG (2015) Processes controlling atmospheric dispersion through city centres. J Fluid Mech 763:51–81

    Article  Google Scholar 

  7. Bentham T, Britter R (2003) Spatially averaged flow within obstacle arrays. Atmos Environ 37(15):2037–2043

    Article  Google Scholar 

  8. Berkowicz R (2000) OSPM—a parameterised street pollution model. In: Sokhi RS, San José R, Moussiopoulos N, Berkowicz R (eds) Urban air quality: measurement, modelling and management: proceedings of the second international conference on urban air quality: measurement, modelling and management; Technical University of Madrid 3–5 March 1999. Springer, Dordrecht, pp 323–331

  9. Biltoft C (2001) Customer report for mock urban setting test. Tech Rep, Report WDTC-FR-01-121, US Army Dugway Proving Ground, Dugway, UT, USA

  10. Boris J, Patnaik G, Obenschain K (2011) The how and why of Nomografs for CT-analyst. Report NRL/MR/6440-11-9326, Naval Research Laboratory, Washington, DC, USA

  11. Boris JP (2002) The threat of chemical and biological terrorism: preparing a response. Comput Sci Eng 4:22–32

    Article  Google Scholar 

  12. Briggs G (1973) Diffusion estimation for small emissions. Report ATDL Report No. 79, ATDL, NOAA/ARL, Oak Ridge, TN, USA

  13. Britter R, Schatzmann M (eds) (2007) Model evaluation guidance and protocol document. COST Action 732. University of Hamburg, Germany

  14. Britter RE, Hanna SR (2003) Flow and dispersion in urban areas. Annu Rev Fluid Mech 35:469–496

    Article  Google Scholar 

  15. Brixey LA, Heist DK, Richmond-Bryant J, Bowker GE, Perry SG, Wiener RW (2009) The effect of a tall tower on flow and dispersion through a model urban neighborhood Part 2. Pollutant dispersion. J Environ Monit 11:2171–2179

    Article  Google Scholar 

  16. Brook D, Felton N, Clem C, Strickland D, Griffiths I, Kingdon R, Hall D, Hargrave J (2003) Validation of the urban dispersion model (UDM). Int J Environ Pollut 20(1–6):11–21

    Article  Google Scholar 

  17. Brown M, Gowardhan A, Nelson M, Williams M, Pardyjak E (2013) QUIC transport and dispersion modelling of two releases from the joint urban 2003 field experiment. Int J Environ Pollut 52(3–4):263–287

    Article  Google Scholar 

  18. Brown MJ (2004) Urban dispersion—challenges for fast response modeling. In: Proceedings of the 5th AMS Symposium on the Urban Environment, p 13. Vancouver, Canada

  19. Carpentieri M, Hayden P, Robins AG (2012a) Wind tunnel measurements of pollutant turbulent fluxes in urban intersections. Atmos Environ 46:669–674

    Article  Google Scholar 

  20. Carpentieri M, Robins A, Hayden P, Santi E (2018) Mean and turbulent mass flux measurements in an idealised street network. Environ Pollut 234:356–367

    Article  Google Scholar 

  21. Carpentieri M, Salizzoni P, Robins A, Soulhac L (2012b) Evaluation of a neighbourhood scale, street network dispersion model through comparison with wind tunnel data. Environ Modell Softw 37:110–124

    Article  Google Scholar 

  22. Carruthers D, Holroyd R, Hunt J, Weng W, Robins A, Apsley D, Thompson D, Smith F (1994) UK-ADMS: a new approach to modelling dispersion in the earth’s atmospheric boundary layer. J Wind Eng Ind Aerodyn 5:139–153

    Article  Google Scholar 

  23. Castro IP, **e ZT, Fuka V, Robins AG, Carpentieri M, Hayden P, Hertwig D, Coceal O (2017) Measurements and computations of flow in an urban street system. Bound Layer Meteorol 162(2):207–230

    Article  Google Scholar 

  24. Chang JC, Hanna SR (2004) Air quality model performance evaluation. Meteorol Atmos Phys 87:167–196

    Article  Google Scholar 

  25. Cimorelli AJ, Perry SG, Venkatram A, Weil JC, Paine R, Wilson RB, Lee RF, Peters WD, Brode RW (2005) AERMOD: a dispersion model for industrial source applications. Part I: general model formulation and boundary layer characterization. J Appl Meteorol 44(5):682–693

    Article  Google Scholar 

  26. Coceal O, Goulart EV, Branford S, Thomas TG, Belcher SE (2014) Flow structure and near-field dispersion in arrays of building-like obstacles. J Wind Eng Ind Aerodyn 125:52–68

    Article  Google Scholar 

  27. Davidson M, Snyder W, Lawson R, Hunt J (1996) Wind tunnel simulations of plume dispersion through groups of obstacles. Atmos Environ 30(22):3715–3731

    Article  Google Scholar 

  28. Dejoan A, Santiago JL, Martilli A, Martin F, Pinelli A (2010) Comparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the MUST field experiment. Part II: effects of incident wind angle deviation on the mean flow and plume dispersion. Bound Layer Meteorol 135(1):133–150

    Article  Google Scholar 

  29. Dobre A, Arnold S, Smalley R, Boddy J, Barlow J, Tomlin A, Belcher S (2005) Flow field measurements in the proximity of an urban intersection in London, UK. Atmos Environ 39(26):4647–4657

    Article  Google Scholar 

  30. Donnelly R, Lyons T, Flassak T (2009) Evaluation of results of a numerical simulation of dispersion in an idealised urban area for emergency response modelling. Atmos Environ 43(29):4416–4423

    Article  Google Scholar 

  31. Fitch JP, Raber E, Imbro DR (2003) Technology challenges in responding to biological or chemical attacks in the civilian sector. Science 302(5649):1350–1354

    Article  Google Scholar 

  32. Fuka V, **e ZT, Castro IP, Hayden P, Carpentieri M, Robins AG (2018) Scalar fluxes near a tall building in an aligned array of rectangular buildings. Bound Layer Meteorol 167(1):53–76

    Article  Google Scholar 

  33. Garbero V, Salizzoni P, Soulhac L (2010) Experimental study of pollutant dispersion within a network of streets. Bound Layer Meteorol 136(3):457–487

    Article  Google Scholar 

  34. Godschalk D (2003) Urban hazard mitigation: creating resilient cities. Natl Hazards Rev 4:136–143

    Article  Google Scholar 

  35. Goulart E (2012) Flow and dispersion in urban areas. Ph.D. thesis, University of Reading

  36. Goulart E, Coceal O, Belcher S (2018) Dispersion of a passive scalar within and above an urban street network. Bound Layer Meteorol 166(3):351–366

    Article  Google Scholar 

  37. Gowardhan AA, Pardyjak ER, Senocak I, Brown MJ (2011) A CFD-based wind solver for an urban fast response transport and dispersion model. Environ Fluid Mech 11(5):439–464

    Article  Google Scholar 

  38. Hamlyn D, Hilderman T, Britter R (2007) A simple network approach to modelling dispersion among large groups of obstacles. Atmos Environ 41(28):5848–5862

    Article  Google Scholar 

  39. Hanna S, Baja E (2009) A simple urban dispersion model tested with tracer data from Oklahoma City and Manhattan. Atmos Environ 43(4):778–786

    Article  Google Scholar 

  40. Hanna S, Chang J (2012) Acceptance criteria for urban dispersion model evaluation. Meteorol Atmos Phys 116(3):133–146

    Article  Google Scholar 

  41. Hanna S, White J, Trolier J, Vernot R, Brown M, Gowardhan A, Kaplan H, Alexander Y, Moussafir J, Wang Y, Williamson C, Hannan J, Hendrick E (2011) Comparisons of JU2003 observations with four diagnostic urban wind flow and Lagrangian particle dispersion models. Atmos Environ 45(24):4073–4081

    Article  Google Scholar 

  42. Hanna SR, Britter R, Franzese P (2003) A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data. Atmos Environ 37(36):5069–5082

    Article  Google Scholar 

  43. Hanna SR, Britter RE (2002) Wind flow and vapor cloud dispersion at industrial and urban sites. American Institute of Chemical Engineers, New York

    Book  Google Scholar 

  44. Hanna SR, Brown MJ, Camelli FE, Chan ST, Coirier WJ, Kim S, Hansen OR, Huber AH, Reynolds RM (2006) Detailed simulations of atmospheric flow and dispersion in downtown Manhattan: an application of five computational fluid dynamics models. Bull Am Meteorol Soc 87(12):1713–1726

    Article  Google Scholar 

  45. Heist DK, Brixey LA, Richmond-Bryant J, Bowker GE, Perry SG, Wiener RW (2009) The effect of a tall tower on flow and dispersion through a model urban neighborhood Part 1. Flow characteristics. J Environ Monit 11:2163–2170

    Article  Google Scholar 

  46. Hertel O, Berkowicz R, Larssen S (1991) The operational street pollution model (OSPM). In: van Dop H, Steyn DG (eds) Air pollution modeling and its application VIII. Springer, Boston, pp 741–750

    Chapter  Google Scholar 

  47. Inagaki M, Kondoh T, Nagano Y (2005) A mixed-time-scale SGS model with fixed model-parameters for practical LES. J Fluid Eng 127:1–13

    Article  Google Scholar 

  48. Jackson PS (1981) On the displacement height in the logarithmic velocity profile. J Fluid Mech 111:15–25

    Article  Google Scholar 

  49. Jones A, Thomson D, Hort M, Devenish B (2007) The UK Met Office’s next-generation atmospheric dispersion model, NAME III. In: Borrego C, Norman AL (eds) Air pollution modeling and its application XVII. Springer, Boston, pp 580–589

    Google Scholar 

  50. Klein P, Leitl B, Schatzmann M (2007) Driving physical mechanisms of flow and dispersion in urban canopies. Int J Climatol 27(14):1887–1907

    Article  Google Scholar 

  51. McHugh C, Carruthers D, Edmunds H (1997) ADMS and ADMS-urban. Int J Environ Pollut 8(3–6):438–440

    Google Scholar 

  52. Nelson M, Addepalli B, Hornsby F, Gowardhan A, Pardyjak E, Brown M (2008) Improvements to a fast-response urban wind model. In: 15th joint conference on the applications of air pollution meteorology with the A&WMA, p 6. New Orleans, LA

  53. Nelson M, Brown M (2013) The QUIC start guide (v6.01). Report LA-UR-13-27291, Los Alamos National Laboratory, Los Alamos, NM, USA

  54. Neophytou M, Gowardhan A, Brown M (2011) An inter-comparison of three urban wind models using Oklahoma City joint urban 2003 wind field measurements. J Wind Eng Ind Aerodyb 99(4):357–368

    Article  Google Scholar 

  55. Pardyjak E, Brown M (2003) QUIC-URB v.1.1: Theory and Users Guide. Report LA-UR-07-3181, Los Alamos National Laboratory, Los Alamos, NM, USA

  56. Pullen J, Boris JP, Young T, Patnaik G, Iselin J (2005) A comparison of contaminant plume statistics from a Gaussian puff and urban CFD model for two large cities. Atmos Environ 39(6):1049–1068

    Article  Google Scholar 

  57. Riddle A, Carruthers D, Sharpe A, McHugh C, Stocker J (2004) Comparisons between FLUENT and ADMS for atmospheric dispersion modelling. Atmos Environ 38(7):1029–1038

    Article  Google Scholar 

  58. Robins A, McHugh C (2001) Development and evaluation of the ADMS building effects module. Int J Environ Pollut 16(1–6):161–174

    Article  Google Scholar 

  59. Röckle R (1990) Bestimmung der Strömungsverhältnisse im Bereich komplexer Bebauungsstrukturen. Ph.D. thesis, Universität Darmstadt

  60. Sabatino SD, Buccolieri R, Pulvirenti B, Britter R (2007) Simulations of pollutant dispersion within idealised urban-type geometries with CFD and integral models. Atmos Environ 41(37):8316–8329

    Article  Google Scholar 

  61. Santiago JL, Dejoan A, Martilli A, Martin F, Pinelli A (2010) omparison between large-eddy simulation and Reynolds-averaged Navier–Stokes computations for the MUST field experiment. part i: Study of the flow for an incident wind directed perpendicularly to the front array of containers. Bound Layer Meteorol 135(1):109–132

    Article  Google Scholar 

  62. Scire JS, Strimaitis DG, Yamartino RJ (2000) A users guide for the CALPUFF dispersion model. Tech Rep, Earth Tech Inc, Concord, MA, USA

  63. Settles GS (2006) Fluid mechanics and homeland security. Annu Rev Fluid Mech 38(1):87–110

    Article  Google Scholar 

  64. Singh B (2012) Development of a fast response dispersion model for virtual urban environments. Ph.D. thesis, University of Utah

  65. Singh B, Hansen BS, Brown MJ, Pardyjak ER (2008) Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environ Fluid Mech 8(4):281–312

    Article  Google Scholar 

  66. Singh B, Pardyjak E, Norgren A, Willemsen P (2011) Accelerating urban fast response Lagrangian dispersion simulations using inexpensive graphics processor parallelism. Environ Modell Softw 26(6):739–750

    Article  Google Scholar 

  67. Soulhac L (2000) Modélisation de la dispersion atmosphérique à l’intérieur de la canopée urbaine. Ph.D. thesis, Ecole Centrale de Lyon

  68. Soulhac L, Garbero V, Salizzoni P, Mejean P, Perkins R (2009) Flow and dispersion in street intersections. Atmos Environ 43(18):2981–2996

    Article  Google Scholar 

  69. Soulhac L, Lamaison G, Cierco FX, Salem NB, Salizzoni P, Mejean P, Armand P, Patryl L (2016) SIRANERISK: modelling dispersion of steady and unsteady pollutant releases in the urban canopy. Atmos Environ 140:242–260

    Article  Google Scholar 

  70. Soulhac L, Puel C, Duclaux O, Perkins R (2003) Simulations of atmospheric pollution in Greater Lyon an example of the use of nested models. Atmos Environ 37(37):5147–5156

    Article  Google Scholar 

  71. Soulhac L, Salizzoni P, Cierco FX, Perkins R (2011) The model SIRANE for atmospheric urban pollutant dispersion; part I, presentation of the model. Atmos Environ 45:7379–7395

    Article  Google Scholar 

  72. Soulhac L, Salizzoni P, Mejean P, Didier D, Rios I (2012) The model SIRANE for atmospheric urban pollutant dispersion; part II, validation of the model on a real case study. Atmos Environ 49:320–337

    Article  Google Scholar 

  73. Soulhac L, Salizzoni P, Mejean P, Perkins R (2013) Parametric laws to model urban pollutant dispersion with a street network approach. Atmos Environ 67:229–241

    Article  Google Scholar 

  74. Stein AF, Draxler RR, Rolph GD, Stunder BJB, Cohen MD, Ngan F (2015) NOAA’s HYSPLIT atmospheric transport and dispersion modeling system. Bull Am Meteorol Soc 96(12):2059–2077

    Article  Google Scholar 

  75. Sykes RI, Henn DS, Parker SF (1996) SCIPUFF—a generalized hazard dispersion model. In: Preprints, ninth joint conference on applications of air pollution meteorology with AWMA, The American Meteor Society, pp 184–188. Atlanta, GA

  76. Taylor KE (2001) Summarizing multiple aspects of model performance in a single diagram. J Geophys Res Atmos 106(D7):7183–7192

    Article  Google Scholar 

  77. Thykier-Nielsen S, Deme S, Mikkelsen T (1999) Description of the atmospheric dispersion module RIMPUFF. Tech Rep, RODOS(WG2)-TN(98)-02, Risø National Laboratory, Roskilde, Denmark

  78. Tinarelli G, Brusasca G, Oldrini O, Anfossi D, Castelli ST, Moussafir J (2007) Micro-swift-spray (MSS): a new modelling system for the simulation of dispersion at microscale. General description and validation. In: Borrego C, Norman AL (eds) Air pollution modeling and its application XVII. Springer, Boston, pp 449–458

    Google Scholar 

  79. Tominaga Y, Stathopoulos T (2013) CFD simulation of near-field pollutant dispersion in the urban environment: a review of current modeling techniques. Atmos Environ 79:716–730

    Article  Google Scholar 

  80. Tominaga Y, Stathopoulos T (2016) Ten questions concerning modeling of near-field pollutant dispersion in the built environment. Build Environ 105:390–402

    Article  Google Scholar 

  81. Williams M, Brown M, Singh B, Boswell D (2004) QUIC-PLUME Theory Guide. Tech Rep, LA-UR-2004, 04-0561, Los Alamos National Laboratory, Los Alamos, NM, USA

  82. Wood CR, Barlow JF, Belcher SE, Dobre A, Arnold SJ, Balogun AA, Lingard JJN, Smalley RJ, Tate JE, Tomlin AS, Britter RE, Cheng H, Martin D, Petersson FK, Shallcross DE, White IR, Neophytou MK, Robins AG (2009) Dispersion experiments in central London: the 2007 DAPPLE project. Bull Am Meteorol Soc 90(7):955–969

    Article  Google Scholar 

Download references

Acknowledgements

The DIPLOS project is funded by the UK’s Engineering and Physical Sciences Research Council Grants EP/K04060X/1 (Southampton), EP/K040731/1 (Surrey) and EP/K040707/1 (Reading). The EnFlo wind tunnel is an NCAS facility and we gratefully acknowledge ongoing NCAS support. We are grateful for comments and ongoing discussions with other colleagues at Surrey, Southampton and elsewhere. We thank Michael Brown and Eric Pardyjak for providing access to the QUIC dispersion modelling system and helpful discussions throughout this study. Stephen Belcher and Elisa Goulart are gratefully acknowledged for their development of and support with the University of Reading Street-Network Model (UoR-SNM). The wind-tunnel data measured in the DIPLOS project are available from the University of Surrey (DOI: https://doi.org/10.6084/m9.figshare.5297245). The LES data analysed in this study can be obtained from the University of Southampton (DOI: https://doi.org/10.5258/SOTON/D0314).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Denise Hertwig.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hertwig, D., Soulhac, L., Fuka, V. et al. Evaluation of fast atmospheric dispersion models in a regular street network. Environ Fluid Mech 18, 1007–1044 (2018). https://doi.org/10.1007/s10652-018-9587-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10652-018-9587-7

Keywords

Navigation