Log in

A microscale model for air pollutant dispersion simulation in urban areas: Presentation of the model and performance over a single building

  • Published:
Advances in Atmospheric Sciences Aims and scope Submit manuscript

Abstract

A microscale air pollutant dispersion model system is developed for emergency response purposes. The model includes a diagnostic wind field model to simulate the wind field and a random-walk air pollutant dispersion model to simulate the pollutant concentration through consideration of the influence of urban buildings. Numerical experiments are designed to evaluate the model’s performance, using CEDVAL (Compilation of Experimental Data for Validation of Microscale Dispersion Models) wind tunnel experiment data, including wind fields and air pollutant dispersion around a single building. The results show that the wind model can reproduce the vortexes triggered by urban buildings and the dispersion model simulates the pollutant concentration around buildings well. Typically, the simulation errors come from the determination of the key zones around a building or building cluster. This model has the potential for multiple applications; for example, the prediction of air pollutant dispersion and the evaluation of environmental impacts in emergency situations; urban planning scenarios; and the assessment of microscale air quality in urban areas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Aumond, P., V. Masson, C. Lac, B. Gauvreau, S. Dupont, and M. Berengier, 2012: Including the drag effects of canopies: Real case large-eddy simulation studies. Bound.-Layer Meteor., 146, 65–80.

    Article  Google Scholar 

  • Bagal, N. L., E. R. Pardyjak, and M. J. Brown, 2004a: Improved upwind cavity parameterizations for a fast response urban wind model. Proc. 84th Annual Meeting Symp. Planning, Nowcasting and Forecasting Urban Zone, Seattle, WA, USA, American Meteorological Society, 5 pp.

    Google Scholar 

  • Bagal, N. L., B. Singh, E. R. Pardyjak, and M. J. Brown, 2004b: Implementation of rooftop recirculation parameterization into the QUIC fast response urban wind model. Proc. 5th AMS Urban Environ. Symp. Conf., Vancouver, B. C., American Meteorological Society. 27 pp.

    Google Scholar 

  • Boppana, V. B. L., Z. T. **e, and I. P. Castro, 2010: Large-eddy simulation of dispersion from surface sources in arrays of obstacles. Bound.-Layer Meteor., 135, 433–454.

    Article  Google Scholar 

  • Britter, R. E., and S. R. Hanna, 2003: Flow and dispersion in urban areas. Annual Review of Fluid Mechanics, 35, 469–496.

    Article  Google Scholar 

  • Britter, R. E., S. R. Hanna, G. A. Briggs, and A. Robins, 2003: Short-range vertical dispersion from a ground level source in a turbulent boundary layer. Atmos. Environ., 37, 3885–3894.

    Article  Google Scholar 

  • Cai, X. M., 2000: Dispersion of a passive plume in an idealised urban convective boundary layer: A large-eddy simulation. Atmos. Environ., 34, 61–72.

    Article  Google Scholar 

  • Cai, X. M., M. Nasrullah, and Y. Huang, 2004: Fumigation of pollutants into a growing convective boundary layer over an inhomogeneous surface: A large eddy simulation. Atmos. Environ., 38, 3605–3616.

    Article  Google Scholar 

  • Castelli, S. T., and T. G. Reisin, 2011: Application of a modified version of RAMS model to simulate the flow and turbulence in the presence of buildings: The MUST COST732 exercise. International Journal of Environment and Pollution, 44, 394–402.

    Article  Google Scholar 

  • Chung, T. N. H., and C. H. Liu, 2013: On the mechanism of air pollutant removal in two-dimensional idealized street canyons: A large-eddy simulation approach. Bound.-Layer Meteor., 148, 241–253.

    Article  Google Scholar 

  • Delay, F., and J. Bodin, 2001: Time domain random walk method to simulate transport by advection-dispersion and matrix diffusion in fracture networks. Geophys. Res. Lett., 28, 4051–4054.

    Article  Google Scholar 

  • Di Sabatino, S., E. Solazzo, P. Paradisi, and R. Britter, 2008: A simple model for spatially-averaged wind profiles within and above an urban canopy. Bound.-Layer Meteor., 127, 131–151.

    Article  Google Scholar 

  • Fujiwara, C., K. Yamashita, M. Nakanishi, and Y. Fujiyoshi, 2011: Dust devil-like vortices in an urban area detected by a 3D scanning Doppler lidar. Journal of Applied Meteorology and Climatology, 50, 534–547.

    Article  Google Scholar 

  • Goodin, W. R., G. J. McRae, and J. H. Seinfeld, 1980: An objective analysis technique for constructing three-dimensional urban-scale wind fields. J. Appl. Meteor., 19, 98–108.

    Article  Google Scholar 

  • Gousseau, P., B. Blocken, and G. J. F. van Heijst, 2011: CFD simulation of pollutant dispersion around isolated buildings: On the role of convective and turbulent mass fluxes in the prediction accuracy. Journal of Hazardous Materials, 194, 422–434.

    Article  Google Scholar 

  • Gu, Z. L., Y. W. Zhang, Y. Cheng, and S. C. Lee, 2011: Effect of uneven building layout on air flow and pollutant dispersion in non-uniform street canyons. Building and Environment, 46: 2657–2665.

    Article  Google Scholar 

  • Hanna, S. R., 1971: A simple method of calculating dispersion from urban area sources. Journal of the Air Pollution Control Association, 21, 774–777.

    Article  Google Scholar 

  • Hanna, S. R., R. Britter, and P. Franzese, 2003: A baseline urban dispersion model evaluated with Salt Lake City and Los Angeles tracer data. Atmos. Environ., 37, 5069–5082.

    Article  Google Scholar 

  • Hertwig, D., G. C. Efthimiou, J. G. Bartzis, and B. Leitl, 2012: CFD-RANS model validation of turbulent flow in a semiidealized urban canopy. Journal of Wind Engineering and Industrial Aerodynamics, 111, 61–72.

    Article  Google Scholar 

  • Inagaki, A., M. C. L. Castillo, Y. Yamashita, M. Kanda, and H. Takimoto, 2012: Large-eddy simulation of coherent flow structures within a cubical canopy. Bound.-Layer Meteor., 142, 207–222.

    Article  Google Scholar 

  • Jiang, D. H., H. N. Liu, and W. G. Wang, 2001: Test a modified surface wind interpolation scheme for complex terrain in a stable atmosphere. Atmos. Environ., 35, 4877–4885.

    Article  Google Scholar 

  • Jiang, W. M, H. B. Yu, and X. Li, 1999: Random walk modeling of wake dispersion for the exhaust tower of an underground tunnel in urban area. Journal of Environmental Sciences, 11, 474–479.

    Google Scholar 

  • Kaplan, H., and N. Dinar, 1996: A Lagrangian dispersion model for calculating concentration distribution within a built-up domain. Atmos. Environ., 30, 4197–4207.

    Article  Google Scholar 

  • Luhar, A. K., A. Venkatram, and S. M. Lee, 2006: On relationships between urban and rural near-surface meteorology for diffusion applications. Atmos. Environ., 40, 6541–6553.

    Article  Google Scholar 

  • Macdonald, R. W., 2000. Modelling the mean velocity profile in the urban canopy layer. Bound.-Layer Meteor., 97, 25–45.

    Article  Google Scholar 

  • McElroy, J. L., 1969: A comparative study of urban and rural dispersion. J. Appl. Meteor., 8, 19–31.

    Article  Google Scholar 

  • Meroney, R. N., 2006: CFD prediction of cooling tower drift. Journal of Wind Engineering and Industrial Aerodynamics, 94, 463–490.

    Article  Google Scholar 

  • Meroney, R. N., 2008: Protocol for CFD prediction of coolingtower drift in an urban environment. Journal of Wind Engineering and Industrial Aerodynamics, 96, 1789–1804.

    Article  Google Scholar 

  • Michioka, T., A. Sato, and K. Sada, 2013: Large-eddy simulation coupled to mesoscale meteorological model for gas dispersion in an urban district. Atmos. Environ., 75, 153–162.

    Article  Google Scholar 

  • Oke, T. R., 1988: Street design and urban canopy layer climate. Energy and Buildings, 11, 103–113.

    Article  Google Scholar 

  • Parente, A., C. Gorlé, J. van Beeck, and C. Benocci, 2011: Improved k-e model and wall function formulation for the RANS simulation of ABL flows. Journal of Wind Engineering and Industrial Aerodynamics, 99, 267–278.

    Article  Google Scholar 

  • Perret, L., and E. Savory, 2013: Large-scale structures over a single street canyon immersed in an urban-type boundary layer. Bound.-Layer Meteor., 148, 111–131.

    Article  Google Scholar 

  • Pol, S. U., N. L. Bagal, B. Singh, M. J. Brown and E. Pardyjak, 2006: Implementation of a new rooftop recirculation parameterization into the QUIC fast response urban wind model. Proc. 6th AMS Symposium Urban Environment, Atlanta, G. A. JP1. 2, American Meteorological Society, 227 pp.

    Google Scholar 

  • Ren, C., E. Y. Y. Ng, and L. Katzschner, 2011: Urban climatic map studies: A review. Int. J. Climatol., 31, 2213–2233.

    Article  Google Scholar 

  • Röckle, R., 1990: Determination of flow relationships in the field of complex building structures. PhD dissertation, Fachberich Mechanik, der Technischen Hochschule Darmstadt, Germany.

    Google Scholar 

  • Ross, D. G., I. N. Smith, P. C. Manins, and D. G. Fox, 1988: Diagnostic wind field modeling for complex terrain: model development and testing. J. Appl. Meteor., 27, 785–796.

    Article  Google Scholar 

  • Saneinejad, S., P. Moonen, T. Defraeye, D. Derome, and J. Carmeliet, 2012: Coupled CFD, radiation and porous media transport model for evaluating evaporative cooling in an urban environment. Journal ofWind Engineering and Industrial Aerodynamics, 104–106, 455–463.

    Google Scholar 

  • Shi, R. F., G. X. Cui, Z. S. Wang, C. X. Xu, and Z. S. Zhang, 2008: Large eddy simulation of wind field and plume dispersion in building array. Atmos. Environ., 42, 1083–1097.

    Article  Google Scholar 

  • Singh, B., B. S. Hansen, M. J. Brown, and E. R. Pardyjak, 2008: Evaluation of the QUIC-URB fast response urban wind model for a cubical building array and wide building street canyon. Environmental Fluid Mechanics, 8, 281–312.

    Article  Google Scholar 

  • Soulhac, L., P. Salizzoni, F.-X. Cierco, and R. Perkins, 2011: The model SIRANE for atmospheric urban pollutant dispersion; Part I, presentation of the model. Atmos. Environ., 45, 7379–7395.

    Article  Google Scholar 

  • Soulhac, L., P. Salizzoni, P. Mejean, D. Didier, and I. Rios, 2012: The model SIRANE for atmospheric urban pollutant dispersion; Part II, validation of the model on a real case study. Atmos. Environ., 49, 320–337.

    Article  Google Scholar 

  • Vardoulakis, S., and Coauthors, 2011: Numerical model intercomparison for wind flow and turbulence around single-block buildings. Environmental Modeling & Assessment, 16, 169–181.

    Article  Google Scholar 

  • Venkatram, A., and M. Princevac, 2008: Using measurements in urban areas to estimate turbulent velocities for modeling dispersion. Atmos. Environ., 42, 3833–3841.

    Article  Google Scholar 

  • van de Walle, B., and M. Turoff, 2008: Decision support for emergency situations. Information Systems and e-Business Management, 6, 295–316.

    Article  Google Scholar 

  • Walton, A., and A. Y. S. Cheng, 2002: Large-eddy simulation of pollution dispersion in an urban street canyon—Part II: Idealised canyon simulation. Atmos. Environ., 36, 3615–3627.

    Article  Google Scholar 

  • Walton, A., A. Y. S. Cheng, and W. C. Yeung, 2002: Large-eddy simulation of pollution dispersion in an urban street canyon—Part I: Comparison with field data. Atmos. Environ., 36, 3601–3613.

    Article  Google Scholar 

  • Wang, P., and H. L. Mu, 2011: Random-walk model simulation of air pollutant dispersion in atmospheric boundary layer in China. Environmental Monitoring and Assessment, 172, 507–515.

    Article  Google Scholar 

  • **e, Z. T., O. Coceal, and I. P. Castro, 2008: Large-eddy simulation of flows over random urban-like obstacles. Bound.-Layer Meteor., 129, 1–23.

    Article  Google Scholar 

  • Zhang, N., and W. M. Jiang, 2006: A large eddy simulation on the effect of building on atmospheric pollutant dispersion. Chinese J. Atmos. Sci., 30, 361–371 (in Chinese).

    Google Scholar 

  • Zhang, Y. W., Z. L. Gu, Y. Cheng, and S. C. Lee, 2011: Effect of real-time boundary wind conditions on the air flow and pollutant dispersion in an urban street canyon-large eddy simulations. Atmos. Environ., 45, 3352–3359.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ning Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, N., Du, Y. & Miao, S. A microscale model for air pollutant dispersion simulation in urban areas: Presentation of the model and performance over a single building. Adv. Atmos. Sci. 33, 184–192 (2016). https://doi.org/10.1007/s00376-015-5152-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00376-015-5152-1

Keywords

Navigation