Log in

Adiposity and cancer survival: a systematic review and meta-analysis

  • Review article
  • Published:
Cancer Causes & Control Aims and scope Submit manuscript

Abstract

Purpose

The increasing availability of clinical imaging tests (especially CT and MRI) that directly quantify adipose tissue has led to a rapid increase in studies examining the relationship of visceral, subcutaneous, and overall adiposity to cancer survival. To summarize this emerging body of literature, we conducted a systematic review and meta-analysis of imaging-measured as well as anthropometric proxies for adipose tissue distribution and cancer survival across a wide range of cancer types.

Methods

Using keywords related to adiposity, cancer, and survival, we conducted a systematic search of the literature in PubMed and MEDLINE, Embase, and Web of Science Core Collection databases from database inception to 30 June 2021. We used a random-effect method to calculate pooled hazard ratios (HR) and corresponding 95% confidence intervals (CI) within each cancer type and tested for heterogeneity using Cochran’s Q test and the I2 test.

Results

We included 203 records for this review, of which 128 records were utilized for quantitative analysis among 10 cancer types: breast, colorectal, gastroesophageal, head and neck, hepatocellular carcinoma, lung, ovarian, pancreatic, prostate, and renal cancer. We found that imaging-measured visceral, subcutaneous, and total adiposity were not significantly associated with increased risk of overall mortality, death from primary cancer, or cancer progression among patients diagnosed with these 10 cancer types; however, we found significant or high heterogeneity for many cancer types. For example, heterogeneity was similarly high when the pooled HRs (95% CI) for overall mortality associated with visceral adiposity were essentially null as in 1.03 (0.55, 1.92; I2 = 58%) for breast, 0.99 (0.81, 1.21; I2 = 71%) for colorectal, versus when they demonstrated a potential increased risk 1.17 (0.85, 1.60; I2 = 78%) for hepatocellular carcinoma and 1.62 (0.90, 2.95; I2 = 84%) for renal cancer.

Conclusion

Greater adiposity at diagnosis (directly measured by imaging) is not associated with worse survival among cancer survivors. However, heterogeneity and other potential limitations were noted across studies, suggesting differences in study design and adiposity measurement approaches, making interpretation of meta-analyses challenging. Future work to standardize imaging measurements and data analyses will strengthen research on the role of adiposity in cancer survival.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

Data availability

The datasets analyzed during the current study are publicly available via applying the searching algorithm proposed in this manuscript to PubMed, Embase, and Web of Science.

References

  1. Lauby-Secretan B, Scoccianti C, Loomis D et al (2016) Body fatness and cancer-viewpoint of the IARC Working Group. N Engl J Med 375:794–798

    Article  PubMed  PubMed Central  Google Scholar 

  2. Siegel RL, Miller KD, Fuchs HE, Jemal A (2022) Cancer statistics, 2022. CA Cancer J Clin 72:7–33

    Article  PubMed  Google Scholar 

  3. Brown KA (2021) Metabolic pathways in obesity-related breast cancer. Nat Rev Endocrinol 17:350–363

    Article  PubMed  CAS  Google Scholar 

  4. Chen J (2011) Multiple signal pathways in obesity-associated cancer. Obes Rev 12:1063–1070

    Article  PubMed  CAS  Google Scholar 

  5. Howe LR, Subbaramaiah K, Hudis CA, Dannenberg AJ (2013) Molecular pathways: adipose inflammation as a mediator of obesity-associated cancer. Clin Cancer Res 19:6074–6083

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. McMillan DC, Sattar N, McArdle CS (2006) ABC of obesity. Obes Cancer BMJ 333:1109–1111

    Google Scholar 

  7. Lee DH, Giovannucci EL (2019) The obesity paradox in cancer: epidemiologic insights and perspectives. Curr Nutr Rep 8:175–181

    Article  PubMed  Google Scholar 

  8. Lennon H, Sperrin M, Badrick E, Renehan AG (2016) The obesity paradox in cancer: a review. Curr Oncol Rep 18:56

    Article  PubMed  PubMed Central  Google Scholar 

  9. Deurenberg P, Yap M, van Staveren WA (1998) Body mass index and percent body fat: a meta analysis among different ethnic groups. Int J Obes Relat Metab Disord 22:1164–1171

    Article  CAS  PubMed  Google Scholar 

  10. Caan BJ, Kroenke CH (2017) Next steps in understanding the obesity paradox in cancer. Cancer Epidemiol Biomark Prev 26:12

    Article  Google Scholar 

  11. Shachar SS, Williams GR (2017) The obesity paradox in cancer-moving beyond BMI-response. Cancer Epidemiol Biomark Prev 26:981

    Article  Google Scholar 

  12. Caan BJ, Cespedes Feliciano EM, Kroenke CH (2018) The importance of body composition in explaining the overweight paradox in cancer-counterpoint. Cancer Res 78:1906–1912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Gonzalez MC, Correia M, Heymsfield SB (2017) A requiem for BMI in the clinical setting. Curr Opin Clin Nutr Metab Care 20:314–321

    Article  PubMed  Google Scholar 

  14. Dewey M, Bosserdt M, Dodd JD, Thun S, Kressel HY (2019) Clinical imaging research: higher evidence, global collaboration, improved reporting, and data sharing are the grand challenges. Radiology 291:547–552

    Article  PubMed  Google Scholar 

  15. Shen W, Punyanitya M, Wang Z et al (1985) (2004) Total body skeletal muscle and adipose tissue volumes: estimation from a single abdominal cross-sectional image. J Appl Physiol 97:2333–2338

    Article  Google Scholar 

  16. University of York Centre for Reviews and Dissemination (2021) PROSPERO. https://www.crd.york.ac.uk/prospero/. Accessed 9 Dec 2021

  17. Page MJ, McKenzie JE, Bossuyt PM et al (2021) The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ 372:n71

    Article  PubMed  PubMed Central  Google Scholar 

  18. Bagheri M, Speakman JR, Shemirani F, Djafarian K (2016) Renal cell carcinoma survival and body mass index: a dose-response meta-analysis reveals another potential paradox within a paradox. Int J Obes (Lond) 40:1817–1822

    Article  CAS  Google Scholar 

  19. Cao Y, Ma J (2011) Body mass index, prostate cancer-specific mortality, and biochemical recurrence: a systematic review and meta-analysis. Cancer Prev Res (Phila) 4:486–501

    Article  CAS  Google Scholar 

  20. Chan DSM, Vieira AR, Aune D et al (2014) Body mass index and survival in women with breast cancer-systematic literature review and meta-analysis of 82 follow-up studies. Ann Oncol 25:1901–1914

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Choi Y, Park B, Jeong BC et al (2013) Body mass index and survival in patients with renal cell carcinoma: a clinical-based cohort and meta-analysis. Int J Cancer 132:625–634

    Article  CAS  PubMed  Google Scholar 

  22. Ejaz A, Spolverato G, Kim Y et al (2015) Impact of body mass index on perioperative outcomes and survival after resection for gastric cancer. J Surg Res 195:74–82

    Article  PubMed  Google Scholar 

  23. Fahey PP, Mallitt KA, Astell-Burt T, Stone G, Whiteman DC (2015) Impact of pre-diagnosis behavior on risk of death from esophageal cancer: a systematic review and meta-analysis. Cancer Causes Control 26:1365–1373

    Article  PubMed  Google Scholar 

  24. Gupta A, Das A, Majumder K et al (2018) Obesity is independently associated with increased risk of hepatocellular cancer-related mortality: a systematic review and meta-analysis. Am J Clin Oncol 41:874

    Article  PubMed  PubMed Central  Google Scholar 

  25. Gupta A, Majumder K, Arora N et al (2016) Premorbid body mass index and mortality in patients with lung cancer: a systematic review and meta-analysis. Lung Cancer 102:49–59

    Article  PubMed  Google Scholar 

  26. Hollander D, Kampman E, van Herpen CM (2015) Pretreatment body mass index and head and neck cancer outcome: a review of the literature. Crit Rev Oncol Hematol 96:328–338

    Article  PubMed  Google Scholar 

  27. Kim LH, Doan P, He Y, Lau HM, Pleass H, Patel MI (2021) A systematic review and meta-analysis of the significance of Body Mass Index on kidney cancer outcomes. J Urol 205:346–355

    Article  PubMed  Google Scholar 

  28. Majumder K, Gupta A, Arora N, Singh PP, Singh S (2016) Premorbid obesity and mortality in patients with pancreatic cancer: a systematic review and meta-analysis. Clin Gastroenterol Hepatol 14:355–368 (quiz e32)

    Article  PubMed  Google Scholar 

  29. Petrelli F, Cortellini A, Indini A et al (2021) Association of obesity with survival outcomes in patients with cancer: a systematic review and meta-analysis. JAMA Netw Open 4:e213520

    Article  PubMed  PubMed Central  Google Scholar 

  30. Protani M, Coory M, Martin JH (2010) Effect of obesity on survival of women with breast cancer: systematic review and meta-analysis. Breast Cancer Res Treat 123:627–635

    Article  PubMed  Google Scholar 

  31. Protani MM, Nagle CM, Webb PM (2012) Obesity and ovarian cancer survival: a systematic review and meta-analysis. Cancer Prev Res (Phila) 5:901–910

    Article  Google Scholar 

  32. Rong X, Wei F, Geng Q, Ruan J (2015) The association between body mass index and the prognosis and postoperative complications of hepatocellular carcinoma: a meta-analysis. Medicine 94:e1269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Shi Y-Q, Yang J, Du P et al (2016) Effect of body mass index on overall survival of pancreatic cancer: a meta-analysis. Medicine 95:e3305

    Article  PubMed  PubMed Central  Google Scholar 

  34. Wang J, Xu H, Zhou S et al (2018) Body mass index and mortality in lung cancer patients: a systematic review and meta-analysis. Eur J Clin Nutr 72:4–17

    Article  CAS  PubMed  Google Scholar 

  35. Wu S, Liu J, Wang X, Li M, Gan Y, Tang Y (2014) Association of obesity and overweight with overall survival in colorectal cancer patients: a meta-analysis of 29 studies. Cancer Causes Control 25:1489–1502

    Article  PubMed  Google Scholar 

  36. Zhang J, Chen Q, Li ZM, Xu XD, Song AF, Wang LS (2018) Association of body mass index with mortality and postoperative survival in renal cell cancer patients, a meta-analysis. Oncotarget 9:13959–13970

    Article  PubMed  PubMed Central  Google Scholar 

  37. Zhang SS, Yang H, Luo KJ et al (2013) The impact of body mass index on complication and survival in resected oesophageal cancer: a clinical-based cohort and meta-analysis. Br J Cancer 109:2894–2903

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Zhao B, Zhang J, Mei D et al (2018) Does high body mass index negatively affect the surgical outcome and long-term survival of gastric cancer patients who underwent gastrectomy: a systematic review and meta-analysis. Eur J Surg Oncol 44:1971–1981

    Article  PubMed  Google Scholar 

  39. Zhong S, Yan X, Wu Y et al (2016) Body mass index and mortality in prostate cancer patients: a dose-response meta-analysis. Prostate Cancer Prostatic Dis 19:122–131

    Article  CAS  PubMed  Google Scholar 

  40. Choi EK, Park HB, Lee KH et al (2018) Body mass index and 20 specific cancers: re-analyses of dose-response meta-analyses of observational studies. Ann Oncol 29:749–757

    Article  CAS  PubMed  Google Scholar 

  41. Deurenberg P (1996) Limitations of the bioelectrical impedance method for the assessment of body fat in severe obesity. Am J Clin Nutr 64:449S-S452

    Article  CAS  PubMed  Google Scholar 

  42. Elia M (2013) Body composition by whole-body bioelectrical impedance and prediction of clinically relevant outcomes: overvalued or underused? Eur J Clin Nutr 67(Suppl 1):S60-70

    Article  PubMed  Google Scholar 

  43. National Heart, Lung, and Blood institute (2021) Study Quality Assessment Tools. https://www.nhlbi.nih.gov/health-topics/study-quality-assessment-tools. Accessed 9 Dec 2021

  44. Mallet R, Decazes P, Modzelewski R et al (2021) Prognostic value of low skeletal muscle mass in patient treated by exclusive curative radiochemotherapy for a NSCLC. Sci Rep 11:10628

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Balentine CJ, Enriquez J, Fisher W et al (2010) Intra-abdominal fat predicts survival in pancreatic cancer. J Gastrointest Surg 14:1832–1837

    Article  PubMed  Google Scholar 

  46. Xu W, Hu X, Anwaier A et al (2021) Fatty acid synthase correlates with prognosis-related abdominal adipose distribution and metabolic disorders of clear cell renal cell carcinoma. Front Mol Biosci. https://doi.org/10.3389/fmolb.2020.610229

    Article  PubMed  PubMed Central  Google Scholar 

  47. Prado CM, Lieffers JR, McCargar LJ et al (2008) Prevalence and clinical implications of sarcopenic obesity in patients with solid tumours of the respiratory and gastrointestinal tracts: a population-based study. Lancet Oncol 9:629–635

    Article  PubMed  Google Scholar 

  48. Mourtzakis M, Prado CM, Lieffers JR, Reiman T, McCargar LJ, Baracos VE (2008) A practical and precise approach to quantification of body composition in cancer patients using computed tomography images acquired during routine care. Appl Physiol Nutr Metab 33:997–1006

    Article  PubMed  Google Scholar 

  49. Yip C, Goh V, Davies A et al (2014) Assessment of sarcopenia and changes in body composition after neoadjuvant chemotherapy and associations with clinical outcomes in oesophageal cancer. Eur Radiol 24:998–1005

    Article  PubMed  Google Scholar 

  50. Gadekar T, Dudeja P, Basu I, Vashisht S, Mukherji S (2020) Correlation of visceral body fat with waist-hip ratio, waist circumference and body mass index in healthy adults: a cross sectional study. Med J Armed Forces India 76:41–46

    Article  PubMed  Google Scholar 

  51. World Health Organization (2011) Waist circumference and waist-hip ratio: report of a WHO expert consultation, Geneva, 8–11 December 2008

  52. Addo OY, Himes JH (2010) Reference curves for triceps and subscapular skinfold thicknesses in US children and adolescents. Am J Clin Nutr 91:635–642

    Article  CAS  PubMed  Google Scholar 

  53. Ruiz L, Colley JR, Hamilton PJ (1971) Measurement of triceps skinfold thickness. An investigation of sources of variation. Br J Prev Soc Med 25:165

    CAS  PubMed  PubMed Central  Google Scholar 

  54. Cochrane Consumers and Communication Review Group (2021) Cochrane Consumers and Communication Group: meta-analysis. http://cccrg.cochrane.org. Accessed 10 Dec 10 2021

  55. Valentine JC, Pigott TD, Rothstein HR (2010) How many studies do you need? A primer on statistical power for meta-analysis. J Educ Behav Stat 35:215–247

    Article  Google Scholar 

  56. DerSimonian R, Laird N (1986) Meta-analysis in clinical trials. Control Clin Trials 7:177–188

    Article  CAS  PubMed  Google Scholar 

  57. Schwarzer G, Carpenter JR, Rücker G (2015) Meta-analysis with R. Springer, Berlin

    Book  Google Scholar 

  58. Higgins JP, Thompson SG, Deeks JJ, Altman DG (2003) Measuring inconsistency in meta-analyses. BMJ 327:557–560

    Article  PubMed  PubMed Central  Google Scholar 

  59. Higgins JPT, Green S (2011) Recommendations on testing for funnel plot asymmetry. https://handbook-5-1.cochrane.org/chapter_10/10_4_3_1_recommendations_on_testing_for_funnel_plot_asymmetry.htm. Accessed 10 Dec 2021

  60. Sterne JA, Sutton AJ, Ioannidis JP et al (2011) Recommendations for examining and interpreting funnel plot asymmetry in meta-analyses of randomised controlled trials. BMJ 343:d4002

    Article  PubMed  Google Scholar 

  61. Begg CB, Mazumdar M (1994) Operating characteristics of a rank correlation test for publication bias. Biometrics 50:1088–1101

    Article  CAS  PubMed  Google Scholar 

  62. Caan BJ, Cespedes Feliciano EM, Prado CM et al (2018) Association of muscle and adiposity measured by computed tomography with survival in patients with nonmetastatic breast cancer. JAMA Oncol 4:798–804

    Article  PubMed  PubMed Central  Google Scholar 

  63. Deluche E, Leobon S, Desport JC, Venat-Bouvet L, Usseglio J, Tubiana-Mathieu N (2018) Impact of body composition on outcome in patients with early breast cancer. Support Care Cancer 26:861–868

    Article  PubMed  Google Scholar 

  64. Franzoi MA, Vandeputte C, Eiger D et al (2020) Computed tomography-based analyses of baseline body composition parameters and changes in breast cancer patients under treatment with CDK 4/6 inhibitors. Breast Cancer Res Treat 181:199–209

    Article  CAS  PubMed  Google Scholar 

  65. Huh J, Park B, Lee H et al (2020) Prognostic value of skeletal muscle depletion measured on computed tomography for overall survival in patients with non-metastatic breast cancer. J Breast Cancer 23:80–92

    Article  PubMed  PubMed Central  Google Scholar 

  66. Iwase T, Parikh A, Dibaj SS et al (2021) The prognostic impact of body composition for locally advanced breast cancer patients who received neoadjuvant chemotherapy. Cancers (Basel) 13:608

    Article  CAS  Google Scholar 

  67. Iwase T, Sangai T, Nagashima T et al (2016) Impact of body fat distribution on neoadjuvant chemotherapy outcomes in advanced breast cancer patients. Cancer Med 5:41–48

    Article  PubMed  Google Scholar 

  68. Song EJ, Lee CW, Jung SY et al (2018) Prognostic impact of skeletal muscle volume derived from cross-sectional computed tomography images in breast cancer. Breast Cancer Res Treat 172:425–436

    Article  CAS  PubMed  Google Scholar 

  69. Bradshaw PT, Feliciano EMC, Prado CM et al (2019) Adipose tissue distribution and survival among women with nonmetastatic breast cancer. Obesity 27:997–1004

    Article  CAS  PubMed  Google Scholar 

  70. Almasaudi AS, Dolan RD, Edwards CA, McMillan DC (2020) Hypoalbuminemia reflects nutritional risk, body composition and systemic inflammation and is independently associated with survival in patients with colorectal cancer. Cancers (Basel) 12:1986

    Article  CAS  Google Scholar 

  71. Basile D, Bartoletti M, Polano M et al (2021) Prognostic role of visceral fat for overall survival in metastatic colorectal cancer: a pilot study. Clin Nutr 40:286–294

    Article  PubMed  Google Scholar 

  72. Caan BJ, Meyerhardt JA, Kroenke CH et al (2017) Explaining the obesity paradox: the association between body composition and colorectal cancer survival (C-SCANS Study). Cancer Epidemiol Biomark Prev 26:1008–1015

    Article  Google Scholar 

  73. Carcamo L, Penailillo E, Bellolio F et al (2021) Computed tomography-measured body composition parameters do not influence survival in non-metastatic colorectal cancer. ANZ J Surg 91:E298–E306

    Article  PubMed  Google Scholar 

  74. Cavagnari MAV, Silva TD, Pereira MAH et al (2019) Impact of genetic mutations and nutritional status on the survival of patients with colorectal cancer. BMC Cancer 19:644

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Charette N, Vandeputte C, Ameye L et al (2019) Prognostic value of adipose tissue and muscle mass in advanced colorectal cancer: a post hoc analysis of two non-randomized phase II trials. BMC Cancer 19:134

    Article  PubMed  PubMed Central  Google Scholar 

  76. Choe EK, Park KJ, Ryoo SB, Moon SH, Oh HK, Han EC (2016) Prognostic impact of changes in adipose tissue areas after colectomy in colorectal cancer patients. J Korean Med Sci 31:1571–1578

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  77. Choi MH, Oh SN, Lee IK, Oh ST, Won DD (2018) Sarcopenia is negatively associated with long-term outcomes in locally advanced rectal cancer. J Cachexia Sarcopenia Muscle 9:53–59

    Article  PubMed  Google Scholar 

  78. Chung E, Lee HS, Cho ES et al (2019) Changes in body composition during adjuvant FOLFOX chemotherapy and overall survival in non-metastatic colon cancer. Cancers (Basel) 12:60

    Article  CAS  Google Scholar 

  79. Clark W, Siegel EM, Chen YA et al (2013) Quantitative measures of visceral adiposity and body mass index in predicting rectal cancer outcomes after neoadjuvant chemoradiation. J Am Coll Surg 216:1070–1081

    Article  PubMed  PubMed Central  Google Scholar 

  80. Dolan RD, Almasaudi AS, Dieu LB, Horgan PG, McSorley ST, McMillan DC (2019) The relationship between computed tomography-derived body composition, systemic inflammatory response, and survival in patients undergoing surgery for colorectal cancer. J Cachexia Sarcopenia Muscle 10:111–122

    Article  PubMed  Google Scholar 

  81. Frostberg E, Pedersen MR, Manhoobi Y, Rahr HB, Rafaelsen SR (2021) Three different computed tomography obesity indices, two standard methods, and one novel measurement, and their association with outcomes after colorectal cancer surgery. Acta Radiol 62:182–189

    Article  PubMed  Google Scholar 

  82. Guiu B, Petit JM, Bonnetain F et al (2010) Visceral fat area is an independent predictive biomarker of outcome after first-line bevacizumab-based treatment in metastatic colorectal cancer. Gut 59:341–347

    Article  CAS  PubMed  Google Scholar 

  83. Han JS, Ryu H, Park IJ et al (2020) Association of body composition with long-term survival in non-metastatic rectal cancer patients. Cancer Res Treat 52:563–572

    Article  PubMed  Google Scholar 

  84. Hopkins JJ, Reif RL, Bigam DL, Baracos VE, Eurich DT, Sawyer MB (2019) The impact of muscle and adipose tissue on long-term survival in patients with stage I to III colorectal cancer. Dis Colon Rectum 62:549–560

    Article  PubMed  Google Scholar 

  85. Kobayashi A, Kaido T, Hamaguchi Y et al (2018) Impact of visceral adiposity as well as sarcopenic factors on outcomes in patients undergoing liver resection for colorectal liver metastases. World J Surg 42:1180–1191

    Article  PubMed  Google Scholar 

  86. Lee CS, Murphy DJ, McMahon C et al (2015) Visceral adiposity is a risk factor for poor prognosis in colorectal cancer patients receiving adjuvant chemotherapy. J Gastrointest Cancer 46:243–250

    Article  CAS  PubMed  Google Scholar 

  87. Lee CS, Won DD, Oh SN et al (2020) Prognostic role of pre-sarcopenia and body composition with long-term outcomes in obstructive colorectal cancer: a retrospective cohort study. World J Surg Oncol 18:230

    Article  PubMed  PubMed Central  Google Scholar 

  88. Malietzis G, Currie AC, Athanasiou T et al (2016) Influence of body composition profile on outcomes following colorectal cancer surgery. Br J Surg 103:572–580

    Article  CAS  PubMed  Google Scholar 

  89. McSorley ST, Black DH, Horgan PG, McMillan DC (2018) The relationship between tumour stage, systemic inflammation, body composition and survival in patients with colorectal cancer. Clin Nutr 37:1279–1285

    Article  PubMed  Google Scholar 

  90. Miyamoto Y, Oki E, Emi Y et al (2018) Low visceral fat content is a negative predictive marker for bevacizumab in metastatic colorectal cancer. Anticancer Res 38:491–499

    CAS  PubMed  Google Scholar 

  91. Perrin T, Lenfant M, Boisson C, Bert M, Rat P, Facy O (2021) Effects of body composition profiles on oncological outcomes and postoperative intraabdominal infection following colorectal cancer surgery. Surg Obes Relat Dis 17:575–584

    Article  PubMed  Google Scholar 

  92. Rickles AS, Iannuzzi JC, Mironov O et al (2013) Visceral obesity and colorectal cancer: are we missing the boat with BMI? J Gastrointest Surg 17:133–43 (discussion p 43)

    Article  PubMed  Google Scholar 

  93. Shirdel M, Andersson F, Myte R et al (2020) Body composition measured by computed tomography is associated with colorectal cancer survival, also in early-stage disease. Acta Oncol 59:799–808

    Article  PubMed  Google Scholar 

  94. Tokunaga R, Nakagawa S, Miyamoto Y et al (2020) The clinical impact of preoperative body composition differs between male and female colorectal cancer patients. Colorectal Dis 22:62–70

    Article  CAS  PubMed  Google Scholar 

  95. van Vledder MG, Levolger S, Ayez N, Verhoef C, Tran TC, Ijzermans JN (2012) Body composition and outcome in patients undergoing resection of colorectal liver metastases. Br J Surg 99:550–557

    Article  PubMed  Google Scholar 

  96. Yoon J, Chung YE, Lim JS, Kim MJ (2019) Quantitative assessment of mesorectal fat: new prognostic biomarker in patients with mid-to-lower rectal cancer. Eur Radiol 29:1240–1247

    Article  PubMed  Google Scholar 

  97. Catanese S, Aringhieri G, Vivaldi C et al (2021) Role of baseline computed-tomography-evaluated body composition in predicting outcome and toxicity from first-line therapy in advanced gastric cancer patients. J Clin Med 10:1079

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  98. Choi MH, Kim KA, Hwang SS, Byun JY (2018) CT-quantified muscle and fat change in patients after surgery or endoscopic resection for early gastric cancer and its impact on long-term outcomes. Medicine (Baltimore) 97:e13878

    Article  Google Scholar 

  99. Dong QT, Cai HY, Zhang Z et al (2021) Influence of body composition, muscle strength, and physical performance on the postoperative complications and survival after radical gastrectomy for gastric cancer: a comprehensive analysis from a large-scale prospective study. Clin Nutr 40:3360–3369

    Article  PubMed  Google Scholar 

  100. Feng W, Huang M, Zhao X et al (2020) Severe loss of visceral fat and skeletal muscle after chemotherapy predicts poor prognosis in metastatic gastric cancer patients without gastrectomy. J Cancer 11:3310–3317

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Gursoy Coruh A, Uzun C, Akkaya Z et al (2021) Prognostic implications of visceral obesity on gastric adenocarcinoma: does it really matter? Clin Imaging 76:228–234

    Article  PubMed  Google Scholar 

  102. Hagens ERC, Feenstra ML, van Egmond MA et al (2020) Influence of body composition and muscle strength on outcomes after multimodal oesophageal cancer treatment. J Cachexia Sarcopenia Muscle 11:756–767

    Article  PubMed  PubMed Central  Google Scholar 

  103. Harada K, Baba Y, Ishimoto T et al (2015) Low visceral fat content is associated with poor prognosis in a database of 507 upper gastrointestinal cancers. Ann Surg Oncol 22:3946–3953

    Article  PubMed  Google Scholar 

  104. Kim JH, Chin HM, Hwang SS, Jun KH (2014) Impact of intra-abdominal fat on surgical outcome and overall survival of patients with gastric cancer. Int J Surg 12:346–352

    Article  CAS  PubMed  Google Scholar 

  105. Li X-T, Tang L, Chen Y, Li Y-L, Zhang X-P, Sun Y-S (2015) Visceral and subcutaneous fat as new independent predictive factors of survival in locally advanced gastric carcinoma patients treated with neo-adjuvant chemotherapy. J Cancer Res Clin Oncol 141:1237–1247

    Article  CAS  PubMed  Google Scholar 

  106. Okamura A, Watanabe M, Yamashita K et al (2018) Implication of visceral obesity in patients with esophageal squamous cell carcinoma. Langenbecks Arch Surg 403:245–253

    PubMed  Google Scholar 

  107. Park HS, Kim HS, Beom SH et al (2018) Marked loss of muscle, visceral fat, or subcutaneous fat after gastrectomy predicts poor survival in advanced gastric cancer: single-center study from the CLASSIC Trial. Ann Surg Oncol 25:3222–3230

    Article  PubMed  Google Scholar 

  108. Taki Y, Sato S, Nakatani E et al (2021) Preoperative skeletal muscle index and visceral-to-subcutaneous fat area ratio are associated with long-term outcomes of elderly gastric cancer patients after gastrectomy. Langenbecks Arch Surg 406:463–471

    Article  PubMed  Google Scholar 

  109. Wang SL, Ma LL, Chen XY et al (2018) Impact of visceral fat on surgical complications and long-term survival of patients with gastric cancer after radical gastrectomy. Eur J Clin Nutr 72:436–445

    Article  PubMed  Google Scholar 

  110. Zhang Y, Li Z, Jiang L et al (2021) Impact of body composition on clinical outcomes in people with gastric cancer undergoing radical gastrectomy after neoadjuvant treatment. Nutrition 85:111135

    Article  PubMed  Google Scholar 

  111. Zhou MJ, Tseng L, Guo X et al (2021) Low subcutaneous adiposity and mortality in esophageal cancer. Cancer Epidemiol Biomark Prev 30:114–122

    Article  Google Scholar 

  112. Hacker UT, Hasenclever D, Linder N et al (2020) Prognostic role of body composition parameters in gastric/gastroesophageal junction cancer patients from the EXPAND trial. J Cachexia Sarcopenia Muscle 11:135–144

    Article  PubMed  Google Scholar 

  113. Saeed N, Shridhar R, Almhanna K, Hoffe S, Chuong M, Meredith K (2017) CT-based assessment of visceral adiposity and outcomes for esophageal adenocarcinoma. J Gastrointest Oncol 8:833–841

    Article  PubMed  PubMed Central  Google Scholar 

  114. Jung AR, Roh JL, Kim JS et al (2019) Prognostic value of body composition on recurrence and survival of advanced-stage head and neck cancer. Eur J Cancer 116:98–106

    Article  PubMed  Google Scholar 

  115. Lee JW, Ban MJ, Park JH, Lee SM (2019) Visceral adipose tissue volume and CT-attenuation as prognostic factors in patients with head and neck cancer. Head Neck 41:1605–1614

    Article  PubMed  Google Scholar 

  116. Pai PC, Chuang CC, Chuang WC et al (2018) Pretreatment subcutaneous adipose tissue predicts the outcomes of patients with head and neck cancer receiving definitive radiation and chemoradiation in Taiwan. Cancer Med 7:1630–1641

    Article  PubMed  PubMed Central  Google Scholar 

  117. Choi Y, Ahn KJ, Jang J et al (2020) Prognostic value of computed tomography-based volumetric body composition analysis in patients with head and neck cancer: feasibility study. Head Neck 42:2614–2625

    Article  PubMed  Google Scholar 

  118. Fujiwara N, Nakagawa H, Kudo Y et al (2015) Sarcopenia, intramuscular fat deposition, and visceral adiposity independently predict the outcomes of hepatocellular carcinoma. J Hepatol 63:131–140

    Article  CAS  PubMed  Google Scholar 

  119. Hamaguchi Y, Kaido T, Okumura S et al (2019) Preoperative visceral adiposity and muscularity predict poor outcomes after hepatectomy for hepatocellular carcinoma. Liver Cancer 8:92–109

    Article  PubMed  Google Scholar 

  120. Higashi T, Hayashi H, Kaida T et al (2015) Prognostic impact of visceral fat amount and branched-chain amino acids (BCAA) in hepatocellular carcinoma. Ann Surg Oncol 22(Suppl 3):S1041–S1047

    Article  PubMed  Google Scholar 

  121. Itoh S, Shirabe K, Matsumoto Y et al (2014) Effect of body composition on outcomes after hepatic resection for hepatocellular carcinoma. Ann Surg Oncol 21:3063–3068

    Article  PubMed  Google Scholar 

  122. Jang HY, Choi GH, Hwang SH et al (2021) Sarcopenia and visceral adiposity predict poor overall survival in hepatocellular carcinoma patients after curative hepatic resection. Transl Cancer Res 10:854–866

    Article  PubMed  PubMed Central  Google Scholar 

  123. Kobayashi T, Kawai H, Nakano O et al (2018) Prognostic value of subcutaneous adipose tissue volume in hepatocellular carcinoma treated with transcatheter intra-arterial therapy. Cancer Manag Res 10:2231–2239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  124. Kroh A, Uschner D, Lodewick T et al (2019) Impact of body composition on survival and morbidity after liver resection in hepatocellular carcinoma patients. Hepatobiliary Pancreat Dis Int 18:28–37

    Article  PubMed  Google Scholar 

  125. Labeur TA, van Vugt JL, Ten Cate DW et al (2019) Body composition is an independent predictor of outcome in patients with hepatocellular carcinoma treated with sorafenib. Liver cancer 8:255–270

    Article  CAS  PubMed  Google Scholar 

  126. Nault JC, Pigneur F, Nelson AC et al (2015) Visceral fat area predicts survival in patients with advanced hepatocellular carcinoma treated with tyrosine kinase inhibitors. Dig Liver Dis 47:869–876

    Article  CAS  PubMed  Google Scholar 

  127. Saeki I, Yamasaki T, Maeda M et al (2019) Effect of body composition on survival benefit of hepatic arterial infusion chemotherapy for advanced hepatocellular carcinoma: a comparison with sorafenib therapy. PLoS ONE 14:e0218136

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  128. Sawada K, Saitho Y, Hayashi H et al (2019) Skeletal muscle mass is associated with toxicity, treatment tolerability, and additional or subsequent therapies in patients with hepatocellular carcinoma receiving sorafenib treatment. JGH Open 3:329–337

    Article  PubMed  PubMed Central  Google Scholar 

  129. Grąt K, Pacho R, Grąt M, Krawczyk M, Zieniewicz K, Rowiński O (2019) Impact of body composition on the risk of hepatocellular carcinoma recurrence after liver transplantation. J Clin Med 8:1672

    Article  PubMed Central  CAS  Google Scholar 

  130. Imai K, Takai K, Maeda T et al (2018) Increased visceral fat volume raises the risk for recurrence of hepatocellular carcinoma after curative treatment. Oncotarget 9:14058–14067

    Article  PubMed  PubMed Central  Google Scholar 

  131. Ferguson MK, Mitzman B, Derstine B et al (2020) A morphomic index is an independent predictor of survival after lung cancer resection. Ann Thorac Surg 109:873–878

    Article  PubMed  Google Scholar 

  132. Lee JW, Lee HS, Na JO, Lee SM (2018) Effect of adipose tissue volume on prognosis in patients with non-small cell lung cancer. Clin Imaging 50:308–313

    Article  PubMed  Google Scholar 

  133. Minami S, Ihara S, Komuta K (2020) Sarcopenia and visceral adiposity are not independent prognostic markers for extensive disease of small-cell lung cancer: a single-centered retrospective cohort study. World J Oncol 11:139

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  134. Minami S, Ihara S, Nishimatsu K, Komuta K (2019) Low body mass index is an independent prognostic factor in patients with non-small cell lung cancer treated with epidermal growth factor receptor tyrosine kinase inhibitor. World J Oncol 10:187

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  135. Minami S, Ihara S, Tanaka T, Komuta K (2020) Sarcopenia and visceral adiposity did not affect efficacy of immune-checkpoint inhibitor monotherapy for pretreated patients with advanced non-small cell lung cancer. World J Oncol 11:9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Popinat G, Cousse S, Goldfarb L et al (2019) Sub-cutaneous Fat Mass measured on multislice computed tomography of pretreatment PET/CT is a prognostic factor of stage IV non-small cell lung cancer treated by nivolumab. Oncoimmunology 8:e1580128

    Article  PubMed  PubMed Central  Google Scholar 

  137. Magri V, Gottfried T, Di Segni M et al (2019) Correlation of body composition by computerized tomography and metabolic parameters with survival of nivolumab-treated lung cancer patients. Cancer Manage Res 11:8201–8207

    Article  CAS  Google Scholar 

  138. Huang X, **e C, Tang J et al (2020) Adipose tissue area as a predictor for the efficacy of apatinib in platinum-resistant ovarian cancer: an exploratory imaging biomarker analysis of the AEROC trial. BMC Med 18:1–10

    Article  Google Scholar 

  139. Slaughter KN, Thai T, Penaroza S et al (2014) Measurements of adiposity as clinical biomarkers for first-line bevacizumab-based chemotherapy in epithelial ovarian cancer. Gynecol Oncol 133:11–15

    Article  CAS  PubMed  Google Scholar 

  140. Torres ML, Hartmann LC, Cliby WA et al (2013) Nutritional status, CT body composition measures and survival in ovarian cancer. Gynecol Oncol 129:548–553

    Article  PubMed  Google Scholar 

  141. Zhang Y, Coletta AM, Allen PK et al (2018) Perirenal adiposity is associated with lower progression-free survival from ovarian cancer. Int J Gynecol Cancer 28:285–292

    Article  PubMed  PubMed Central  Google Scholar 

  142. Huang CY, Yang YC, Chen TC et al (2020) Muscle loss during primary debulking surgery and chemotherapy predicts poor survival in advanced-stage ovarian cancer. J Cachexia Sarcopenia Muscle 11:534–546

    Article  PubMed  PubMed Central  Google Scholar 

  143. Gaujoux S, Torres J, Olson S et al (2012) Impact of obesity and body fat distribution on survival after pancreaticoduodenectomy for pancreatic adenocarcinoma. Ann Surg Oncol 19:2908–2916

    Article  PubMed  Google Scholar 

  144. Lee J, Lee JC, Kim HW, Kim J, Hwang JH (2020) Postoperative muscle mass restoration as a prognostic factor in patients with resected pancreatic cancer. PLoS ONE 15:e0238649

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  145. Lee JW, Lee SM, Chung YA (2018) Prognostic value of CT attenuation and FDG uptake of adipose tissue in patients with pancreatic adenocarcinoma. Clin Radiol 73:1056

    Article  PubMed  Google Scholar 

  146. Naumann P, Eberlein J, Farnia B et al (2019) Cachectic body composition and inflammatory markers portend a poor prognosis in patients with locally advanced pancreatic cancer treated with chemoradiation. Cancers 11:1655

    Article  CAS  PubMed Central  Google Scholar 

  147. Okumura S, Kaido T, Hamaguchi Y et al (2017) Visceral adiposity and sarcopenic visceral obesity are associated with poor prognosis after resection of pancreatic cancer. Ann Surg Oncol 24:3732–3740

    Article  PubMed  Google Scholar 

  148. Ryu Y, Shin SH, Kim JH et al (2020) The effects of sarcopenia and sarcopenic obesity after pancreaticoduodenectomy in patients with pancreatic head cancer. HPB 22:1782–1792

    Article  PubMed  Google Scholar 

  149. Wochner R, Clauss D, Nattenmueller J et al (2020) Impact of progressive resistance training on CT quantified muscle and adipose tissue compartments in pancreatic cancer patients. PLoS ONE 15:e0242785

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  150. Choi MH, Yoon SB, Lee K et al (2018) Preoperative sarcopenia and post-operative accelerated muscle loss negatively impact survival after resection of pancreatic cancer. J Cachexia Sarcopenia Muscle 9:326–334

    Article  PubMed  PubMed Central  Google Scholar 

  151. Cooper AB, Slack R, Fogelman D et al (2015) Characterization of anthropometric changes that occur during neoadjuvant therapy for potentially resectable pancreatic cancer. Ann Surg Oncol 22:2416–2423

    Article  PubMed  Google Scholar 

  152. Kim B, Chung MJ, Park SW et al (2016) Visceral obesity is associated with poor prognosis in pancreatic adenocarcinoma. Nutr Cancer Int J 68:201–207

    Article  CAS  Google Scholar 

  153. Peng YC, Wu CH, Tien YW, Lu TP, Wang YH, Chen BB (2021) Preoperative sarcopenia is associated with poor overall survival in pancreatic cancer patients following pancreaticoduodenectomy. Eur Radiol 31:2472–2481

    Article  PubMed  Google Scholar 

  154. Antoun S, Bayar A, Ileana E et al (2015) High subcutaneous adipose tissue predicts the prognosis in metastatic castration-resistant prostate cancer patients in post chemotherapy setting. Eur J Cancer 51:2570–2577

    Article  PubMed  Google Scholar 

  155. Buttigliero C, Vana F, Bertaglia V et al (2015) The fat body mass increase after adjuvant androgen deprivation therapy is predictive of prostate cancer outcome. Endocrine 50:223–230

    Article  CAS  PubMed  Google Scholar 

  156. Cushen SJ, Power DG, Murphy KP et al (2016) Impact of body composition parameters on clinical outcomes in patients with metastatic castrate-resistant prostate cancer treated with docetaxel. Clin Nutr ESPEN 13:e39–e45

    Article  PubMed  Google Scholar 

  157. Di Bella CM, Howard LE, Oyekunle T et al (2020) Abdominal and pelvic adipose tissue distribution and risk of prostate cancer recurrence after radiation therapy. Prostate 80:1244–1252

    Article  PubMed  CAS  Google Scholar 

  158. Gregg JR, Surasi DS, Childs A et al (2021) The association of periprostatic fat and grade group progression in men with localized prostate cancer on active surveillance. J Urol 205:122–128

    Article  PubMed  Google Scholar 

  159. Lee JS, Lee HS, Ha JS et al (2018) Subcutaneous fat distribution is a prognostic biomarker for men with castration resistant prostate cancer. J Urol 200:114–120

    Article  PubMed  Google Scholar 

  160. Mason RJ, Boorjian SA, Bhindi B et al (2018) Examining the association between adiposity and biochemical recurrence after radical prostatectomy. Can Urol Assoc J 12:E331–E337

    Article  PubMed  PubMed Central  Google Scholar 

  161. Pak S, Kim MS, Park EY, Kim SH, Lee KH, Joung JY (2020) Association of body composition with survival and treatment efficacy in castration-resistant prostate cancer. Front Oncol. https://doi.org/10.3389/fonc.2020.00558

    Article  PubMed  PubMed Central  Google Scholar 

  162. Sasaki T, Sugino Y, Kato M, Nishikawa K, Kanda H (2020) Pre-treatment ratio of periprostatic to subcutaneous fat thickness on MRI is an independent survival predictor in hormone-naïve men with advanced prostate cancer. Int J Clin Oncol 25:370–376

    Article  CAS  PubMed  Google Scholar 

  163. Stangl-Kremser J, Suarez-Ibarrola R, Andrea DD et al (2020) Assessment of body composition in the advanced stage of castration-resistant prostate cancer: special focus on sarcopenia. Prostate Cancer Prostatic Dis 23:309–315

    Article  CAS  PubMed  Google Scholar 

  164. Wu W, Liu X, Chaftari P et al (2015) Association of body composition with outcome of docetaxel chemotherapy in metastatic prostate cancer: a retrospective review. PLoS ONE 10:e0122047

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  165. Zimmermann M, Delouya G, Barkati M, Campeau S, Rompotinos D, Taussky D (2016) Impact of visceral fat volume and fat density on biochemical outcome after radical prostatectomy and postoperative radiotherapy. Horm Mol Biol Clin Investig 26:173–178

    CAS  PubMed  Google Scholar 

  166. Antoun S, Lanoy E, Iacovelli R et al (2013) Skeletal muscle density predicts prognosis in patients with metastatic renal cell carcinoma treated with targeted therapies. Cancer 119:3377–3384

    Article  PubMed  Google Scholar 

  167. Dai J, Zhang X, Liu Z et al (2020) The prognostic value of body fat components in metastasis renal cell carcinoma patients treated with TKIs. Cancer Manage Res 12:891–903

    Article  Google Scholar 

  168. Huang H, Chen S, Li W, Wu X, **ng J (2018) High perirenal fat thickness predicts a poor progression-free survival in patients with localized clear cell renal cell carcinoma. In: Urologic oncology-seminars and original investigations, vol. 36

  169. Kaneko G, Miyajima A, Yuge K et al (2015) Visceral obesity is associated with better recurrence-free survival after curative surgery for Japanese patients with localized clear cell renal cell carcinoma. Jpn J Clin Oncol 45:210–216

    Article  PubMed  Google Scholar 

  170. Kays JK, Koniaris LG, Cooper CA et al (2020) The combination of low skeletal muscle mass and high tumor interleukin-6 associates with decreased survival in clear cell renal cell carcinoma. Cancers 12:1605

    Article  CAS  PubMed Central  Google Scholar 

  171. Ladoire S, Bonnetain F, Gauthier M et al (2011) Visceral fat area as a new independent predictive factor of survival in patients with metastatic renal cell carcinoma treated with antiangiogenic agents. Oncologist 16:71–81

    Article  PubMed  PubMed Central  Google Scholar 

  172. Lee HW, Jeong BC, Seo SI et al (2015) Prognostic significance of visceral obesity in patients with advanced renal cell carcinoma undergoing nephrectomy. Int J Urol 22:455–461

    Article  PubMed  Google Scholar 

  173. Mizuno R, Miyajima A, Hibi T et al (2017) Impact of baseline visceral fat accumulation on prognosis in patients with metastatic renal cell carcinoma treated with systemic therapy. Med Oncol. https://doi.org/10.1007/s12032-017-0908-3

    Article  PubMed  Google Scholar 

  174. Naya Y, Zenbutsu S, Araki K et al (2010) Influence of visceral obesity on oncologic outcome in patients with renal cell carcinoma. Urol Int 85:30–36

    Article  PubMed  Google Scholar 

  175. Nguyen GK, Mellnick VM, Yim AK-Y, Salter A, Ippolito JE (2018) Synergy of sex differences in visceral fat measured with CT and tumor metabolism helps predict overall survival in patients with renal cell carcinoma. Radiology 287:884–892

    Article  PubMed  Google Scholar 

  176. Park YH, Lee JK, Kim KM et al (2014) Visceral obesity in predicting oncologic outcomes of localized renal cell carcinoma. J Urol 192:1043–1049

    Article  PubMed  Google Scholar 

  177. Steffens S, Gruenwald V, Ringe KI et al (2011) Does obesity influence the prognosis of metastatic renal cell carcinoma in patients treated with vascular endothelial growth factor-targeted therapy? Oncologist 16:1565–1571

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  178. Boutin RD, Katz JR, Chaudhari AJ et al (2020) Association of adipose tissue and skeletal muscle metrics with overall survival and postoperative complications in soft tissue sarcoma patients: an opportunistic study using computed tomography. Quant Imaging Med Surg 10:1580–1589

    Article  PubMed  PubMed Central  Google Scholar 

  179. Celik E, Kizildag Yirgin I, Goksever Celik H et al (2021) Does visceral adiposity have an effect on the survival outcomes of the patients with endometrial cancer? J Obstet Gynaecol Res 47:560–569

    Article  PubMed  Google Scholar 

  180. Chakedis J, Spolverato G, Beal EW et al (2018) Pre-operative sarcopenia identifies patients at risk for poor survival after resection of biliary tract cancers. J Gastrointest Surg 22:1697–1708

    Article  PubMed  Google Scholar 

  181. De Amorim BK, Bos SA, Veld J, Lozano-Calderon SA, Torriani M, Bredella MA (2018) Body composition predictors of therapy response in patients with primary extremity soft tissue sarcomas. Acta Radiol 59:478–484

    Article  Google Scholar 

  182. Donkers H, Fasmer KE, McGrane J et al (2021) Obesity and visceral fat: survival impact in high-grade endometrial cancer. Eur J Obstet Gynecol Reprod Biol 256:425–432

    Article  PubMed  Google Scholar 

  183. Gillen J, Mills KA, Dvorak J et al (2019) Imaging biomarkers of adiposity and sarcopenia as potential predictors for overall survival among patients with endometrial cancer treated with bevacizumab. Gynecol Oncol Rep 30:100502

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  184. Grignol VP, Smith AD, Shlapak D, Zhang X, Del Campo SM, Carson WE (2015) Increased visceral to subcutaneous fat ratio is associated with decreased overall survival in patients with metastatic melanoma receiving anti-angiogenic therapy. Surg Oncol Oxford 24:353–358

    Article  Google Scholar 

  185. He WZ, Jiang C, Liu LL et al (2020) Association of body composition with survival and inflammatory responses in patients with non-metastatic nasopharyngeal cancer. Oral Oncol 108:104771

    Article  CAS  PubMed  Google Scholar 

  186. Jung J, Lee E, Shim H, Park JH, Eom HS, Lee H (2021) Prediction of clinical outcomes through assessment of sarcopenia and adipopenia using computed tomography in adult patients with acute myeloid leukemia. Int J Hematol 114:44–52

    Article  CAS  PubMed  Google Scholar 

  187. Mauland KK, Eng Ø, Ytre-Hauge S et al (2017) High visceral fat percentage is associated with poor outcome in endometrial cancer. Oncotarget 8:105184–105195

    Article  PubMed  PubMed Central  Google Scholar 

  188. Miller BS, Ignatoski KM, Daignault S et al (2012) Worsening central sarcopenia and increasing intra-abdominal fat correlate with decreased survival in patients with adrenocortical carcinoma. World J Surg 36:1509–1516

    Article  PubMed  Google Scholar 

  189. Okumura S, Kaido T, Hamaguchi Y et al (2017) Impact of skeletal muscle mass, muscle quality, and visceral adiposity on outcomes following resection of intrahepatic cholangiocarcinoma. Ann Surg Oncol 24:1037–1045

    Article  PubMed  Google Scholar 

  190. Pan Y, Chen Z, Yang L et al (2021) Body composition parameters may be prognostic factors in upper urinary tract urothelial carcinoma treated by radical nephroureterectomy. Front Oncol 11:679158

    Article  PubMed  PubMed Central  Google Scholar 

  191. Papoulas M, Weiser R, Rosen G et al (2015) Visceral fat content correlates with retroperitoneal soft tissue sarcoma (STS) local recurrence and survival. World J Surg 39:1895–1901

    Article  PubMed  Google Scholar 

  192. Psutka SP, Boorjian SA, Moynagh MR et al (2015) Mortality after radical cystectomy: impact of obesity versus adiposity after adjusting for skeletal muscle wasting. J Urol 193:1507–1513

    Article  PubMed  Google Scholar 

  193. Shin DY, Kim A, Byun BH et al (2016) Visceral adipose tissue is prognostic for survival of diffuse large B cell lymphoma treated with frontline R-CHOP. Ann Hematol 95:409–416

    Article  CAS  PubMed  Google Scholar 

  194. Takeoka Y, Sakatoku K, Miura A et al (2016) Prognostic effect of low subcutaneous adipose tissue on survival outcome in patients with multiple myeloma. Clin Lymphoma Myeloma Leuk 16:434–441

    Article  PubMed  Google Scholar 

  195. Young AC, Quach HT, Song H et al (2020) Impact of body composition on outcomes from anti-PD1 +/-anti-CTLA-4 treatment in melanoma. J Immunotherapy Cancer 8:e000821

    Article  Google Scholar 

  196. Antoun S, Bayar MA, Dyevre V, Lanoy E, Smolenschi C, Ducreux M (2019) No evidence for changes in skeletal muscle mass or weight during first-line chemotherapy for metastatic colorectal cancer. BMC Cancer 19:1–11

    Article  CAS  Google Scholar 

  197. Bachmann R, Leonard D, Nachit M et al (2018) Comparison between abdominal fat measured by CT and anthropometric indices as prediction factors for mortality and morbidity after colorectal surgery. Acta Gastro-Enterol Belg 81:477–483

    CAS  Google Scholar 

  198. Ballian N, Lubner MG, Munoz A et al (2012) Visceral obesity is associated with outcomes of total mesorectal excision for rectal adenocarcinoma. J Surg Oncol 105:365–370

    Article  PubMed  Google Scholar 

  199. Bian X, Dai H, Feng J et al (2018) Prognostic values of abdominal body compositions on survival in advanced pancreatic cancer. Medicine 97:e10988

    Article  PubMed  PubMed Central  Google Scholar 

  200. Blanc-Durand P, Campedel L, Mule S et al (2020) Prognostic value of anthropometric measures extracted from whole-body CT using deep learning in patients with non-small-cell lung cancer. Eur Radiol 30:3528–3537

    Article  PubMed  Google Scholar 

  201. Brown JC, Caan BJ, Prado CM et al (2020) The association of abdominal adiposity with mortality in patients with stage I-III colorectal cancer. J Natl Cancer Inst 112:377–383

    Article  PubMed  Google Scholar 

  202. Buechel ME, Enserro D, Burger RA et al (2021) Correlation of imaging and plasma based biomarkers to predict response to bevacizumab in epithelial ovarian cancer (EOC). Gynecol Oncol 161:382–388

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  203. Cloyd JM, Nogueras-González GM, Prakash LR et al (2018) Anthropometric changes in patients with pancreatic cancer undergoing preoperative therapy and pancreatoduodenectomy. J Gastrointest Surg 22:703–712

    Article  PubMed  Google Scholar 

  204. Goulart A, Malheiro N, Rios H, Sousa N, Leao P (2019) Influence of visceral fat in the outcomes of colorectal cancer. Dig Surg 36:33–40

    Article  PubMed  Google Scholar 

  205. Gu W, Zhu Y, Wang H et al (2015) Prognostic value of components of body composition in patients treated with targeted therapy for advanced renal cell carcinoma: a retrospective case series. PLoS ONE 10:e0118022

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  206. Ha Y, Kim D, Han S et al (2018) Sarcopenia predicts prognosis in patients with newly diagnosed hepatocellular carcinoma, independent of tumor stage and liver function. Cancer Res Treat 50:843–851

    Article  CAS  PubMed  Google Scholar 

  207. Iwase T, Sangai T, Fujimoto H et al (2020) Quality and quantity of visceral fat tissue are associated with insulin resistance and survival outcomes after chemotherapy in patients with breast cancer. Breast Cancer Res Treat 179:435–443

    Article  CAS  PubMed  Google Scholar 

  208. Katsui K, Ogata T, Sugiyama S et al (2021) Sarcopenia is associated with poor prognosis after chemoradiotherapy in patients with stage III non-small-cell lung cancer: a retrospective analysis. Sci Rep 11:11882

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  209. Kuritzkes BA, Pappou EP, Kiran RP et al (2018) Visceral fat area, not body mass index, predicts postoperative 30-day morbidity in patients undergoing colon resection for cancer. Int J Colorectal Dis 33:1019–1028

    Article  PubMed  PubMed Central  Google Scholar 

  210. Lee JW, Kim SY, Lee HJ, Han SW, Lee JE, Lee SM (2019) Prognostic significance of abdominal-to-gluteofemoral adipose tissue distribution in patients with breast cancer. J Clin Med 8:1358

    Article  CAS  PubMed Central  Google Scholar 

  211. Looijaard S, Meskers CGM, Slee-Valentijn MS et al (2020) Computed tomography-based body composition is not consistently associated with outcome in older patients with colorectal cancer. Oncologist 25:e492–e501

    Article  PubMed  Google Scholar 

  212. McDonald AM, Fiveash JB, Kirkland RS et al (2017) Subcutaneous adipose tissue characteristics and the risk of biochemical recurrence in men with high-risk prostate cancer. Urol Oncol Semin Original Investig 35:663

    Google Scholar 

  213. Moon HG, Ju YT, Jeong CY et al (2008) Visceral obesity may affect oncologic outcome in patients with colorectal cancer. Ann Surg Oncol 15:1918–1922

    Article  PubMed  Google Scholar 

  214. Nattenmueller J, Wochner R, Muley T et al (2017) Prognostic impact of CT-quantified muscle and fat distribution before and after first-line-chemotherapy in lung cancer patients. PLoS ONE 12:e0169136

    Article  CAS  Google Scholar 

  215. Ninomiya G, Fujii T, Yamada S et al (2017) Clinical impact of sarcopenia on prognosis in pancreatic ductal adenocarcinoma: a retrospective cohort study. Int J Surg 39:45–51

    Article  PubMed  Google Scholar 

  216. Ohki T, Tateishi R, Shiina S et al (2009) Visceral fat accumulation is an independent risk factor for hepatocellular carcinoma recurrence after curative treatment in patients with suspected NASH. Gut 58:839–844

    Article  CAS  PubMed  Google Scholar 

  217. Ohwaki K, Endo F, Hattori K (2015) Abdominal obesity, hypertension, antihypertensive medication use and biochemical recurrence of prostate cancer after radical prostatectomy. Eur J Cancer 51:604–609

    Article  PubMed  Google Scholar 

  218. Park JS, Koo KC, Chung DY et al (2020) Visceral adiposity as a significant predictor of sunitinib-induced dose-limiting toxicities and survival in patients with metastatic clear cell renal cell carcinoma. Cancers 12:3602

    Article  CAS  PubMed Central  Google Scholar 

  219. Park SW, Lee HL, Doo EY et al (2015) Visceral obesity predicts fewer lymph node metastases and better overall survival in colon cancer. J Gastrointest Surg 19:1513–1521

    Article  PubMed  PubMed Central  Google Scholar 

  220. Rodrigues V, Landi F, Castro S et al (2021) Is Sarcopenic Obesity an Indicator of Poor Prognosis in Gastric Cancer Surgery? A Cohort Study in a Western Population. J Gastrointest Surg 25:1388–1403

    Article  CAS  PubMed  Google Scholar 

  221. Sabel MS, Terjimanian M, Conlon AS et al (2013) Analytic morphometric assessment of patients undergoing colectomy for colon cancer. J Surg Oncol 108:169–175

    Article  PubMed  Google Scholar 

  222. Schaffler-Schaden D, Mittermair C, Birsak T et al (2020) Skeletal muscle index is an independent predictor of early recurrence in non-obese colon cancer patients. Langenbecks Arch Surg 405:469–477

    Article  PubMed  PubMed Central  Google Scholar 

  223. Sheikhbahaei S, Reyes DK, Rowe SP, Pienta KJ (2021) CT-based assessment of body composition following neoadjuvant chemohormonal therapy in patients with castration-naive oligometastatic prostate cancer. Prostate 81:127–134

    Article  CAS  PubMed  Google Scholar 

  224. Silva A, Gomes F, Pereira SS, Monteiro MP, Araújo A, Faria G (2021) Visceral obesity is associated with lower stage colon tumors in males without survival advantage. Surg Oncol 37:101606

    Article  PubMed  Google Scholar 

  225. Sugimoto M, Farnell MB, Nagorney DM et al (2018) Decreased skeletal muscle volume is a predictive factor for poorer survival in patients undergoing surgical resection for pancreatic ductal adenocarcinoma. J Gastrointest Surg 22:831–839

    Article  PubMed  PubMed Central  Google Scholar 

  226. Tamandl D, Paireder M, Asari R, Baltzer PA, Schoppmann SF, Ba-Ssalamah A (2016) Markers of sarcopenia quantified by computed tomography predict adverse long-term outcome in patients with resected oesophageal or gastro-oesophageal junction cancer. Eur Radiol 26:1359–1367

    Article  PubMed  Google Scholar 

  227. van Baar H, Winkels RM, Brouwer JGM et al (2020) Associations of abdominal skeletal muscle mass, fat mass, and mortality among men and women with stage I-III colorectal cancer. Cancer Epidemiol Biomark Prev 29:956–965

    Article  Google Scholar 

  228. van Dijk DP, Bakens MJ, Coolsen MM et al (2017) Low skeletal muscle radiation attenuation and visceral adiposity are associated with overall survival and surgical site infections in patients with pancreatic cancer. J Cachexia Sarcopenia Muscle 8:317–326

    Article  PubMed  Google Scholar 

  229. van Dijk DPJ, Krill M, Farshidfar F et al (2019) Host phenotype is associated with reduced survival independent of tumour biology in patients with colorectal liver metastases. J Cachexia Sarcopenia Muscle 10:123–130

    Article  PubMed  Google Scholar 

  230. von Hessen L, Roumet M, Maurer MH et al (2021) High subcutaneous adipose tissue density correlates negatively with survival in patients with hepatocellular carcinoma. Liver Int 41:828–836

    Article  CAS  Google Scholar 

  231. Xu MC, Huelster HL, Hatcher JB et al (2021) Obesity is associated with longer survival independent of sarcopenia and myosteatosis in metastatic and/or castrate-resistant prostate cancer. J Urol 205:800–805

    Article  PubMed  Google Scholar 

  232. Yamamoto N, Fujii S, Sato T et al (2012) Impact of body mass index and visceral adiposity on outcomes in colorectal cancer. Asia Pac J Clin Oncol 8:337–345

    Article  PubMed  Google Scholar 

  233. Ying P, ** W, Wu X, Cai W (2021) Association between CT-quantified body composition and recurrence, survival in nonmetastasis colorectal cancer patients underwent regular chemotherapy after surgery. Biomed Res Int 2021:6657566

    Article  PubMed  PubMed Central  Google Scholar 

  234. Yoo ID, Lee SM, Lee JW, Baek M-J, Ahn TS (2018) Usefulness of metabolic activity of adipose tissue in FDG PET/CT of colorectal cancer. Abdom Radiol 43:2052–2059

    Article  Google Scholar 

  235. Abrahamson PE, Gammon MD, Lund MJ et al (2006) General and abdominal obesity and survival among young women with breast cancer. Cancer Epidemiol Biomark Prev 15:1871–1877

    Article  Google Scholar 

  236. Borugian MJ, Sheps SB, Kim-Sing C et al (2003) Waist-to-hip ratio and breast cancer mortality. Am J Epidemiol 158:963–968

    Article  PubMed  Google Scholar 

  237. Chen H-l, Ding A, Wang M-l (2016) Impact of central obesity on prognostic outcome of triple negative breast cancer in Chinese women. Springerplus 5:1–8

    Google Scholar 

  238. Dal Maso L, Zucchetto A, Talamini R et al (2008) Effect of obesity and other lifestyle factors on mortality in women with breast cancer. Int J Cancer 123:2188–2194

    Article  CAS  Google Scholar 

  239. George SM, Bernstein L, Smith AW et al (2014) Central adiposity after breast cancer diagnosis is related to mortality in the Health, Eating, Activity, and Lifestyle study. Breast Cancer Res Treat 146:647–655

    Article  PubMed  PubMed Central  Google Scholar 

  240. Goodwin PJ, Ennis M, Pritchard KI et al (2012) Insulin- and obesity-related variables in early-stage breast cancer: correlations and time course of prognostic associations. J Clin Oncol 30:164–171

    Article  PubMed  Google Scholar 

  241. His M, Fagherazzi G, Mesrine S, Boutron-Ruault MC, Clavel-Chapelon F, Dossus L (2016) Prediagnostic body size and breast cancer survival in the E3N cohort study. Int J Cancer 139:1053–1064

    Article  CAS  PubMed  Google Scholar 

  242. Kwan ML, John EM, Caan BJ et al (2014) Obesity and mortality after breast cancer by race/ethnicity: the California breast cancer survivorship consortium. Am J Epidemiol 179:95–111

    Article  PubMed  Google Scholar 

  243. Shariff-Marco S, Gomez SL, Sangaramoorthy M et al (2015) Impact of neighborhoods and body size on survival after breast cancer diagnosis. Health Place 36:162–172

    Article  PubMed  PubMed Central  Google Scholar 

  244. Sun X, Nichols HB, Robinson W, Sherman ME, Olshan AF, Troester MA (2015) Post-diagnosis adiposity and survival among breast cancer patients: influence of breast cancer subtype. Cancer Causes Control 26:1803–1811

    Article  PubMed  PubMed Central  Google Scholar 

  245. Tao MH, Shu XO, Ruan ZX, Gao YT, Zheng W (2006) Association of overweight with breast cancer survival. Am J Epidemiol 163:101–107

    Article  PubMed  Google Scholar 

  246. Wisse A, Tryggvadottir H, Simonsson M et al (2018) Increasing preoperative body size in breast cancer patients between 2002 and 2016: implications for prognosis. Cancer Causes Control 29:643–656

    Article  PubMed  PubMed Central  Google Scholar 

  247. Zhang M, Cai H, Bao P et al (2017) Body mass index, waist-to-hip ratio and late outcomes: a report from the Shanghai Breast Cancer Survival Study. Sci Rep. https://doi.org/10.1038/s41598-017-07320-7

    Article  PubMed  PubMed Central  Google Scholar 

  248. Zhang S, Folsom AR, Sellers TA, Kushi LH, Potter JD (1995) Better breast cancer survival for postmenopausal women who are less overweight and eat less fat. Iowa Women’s Health Study Cancer 76:275–283

    CAS  PubMed  Google Scholar 

  249. Fedirko V, Romieu I, Aleksandrova K et al (2014) Pre-diagnostic anthropometry and survival after colorectal cancer diagnosis in Western European populations. Int J Cancer 135:1949–1960

    Article  CAS  PubMed  Google Scholar 

  250. Haydon AM, Macinnis RJ, English DR, Giles GG (2006) Effect of physical activity and body size on survival after diagnosis with colorectal cancer. Gut 55:62–67

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  251. Jayasekara H, English DR, Haydon A et al (2018) Associations of alcohol intake, smoking, physical activity and obesity with survival following colorectal cancer diagnosis by stage, anatomic site and tumor molecular subtype. Int J Cancer 142:238–250

    Article  CAS  PubMed  Google Scholar 

  252. Prizment AE, Flood A, Anderson KE, Folsom AR (2010) Survival of women with colon cancer in relation to precancer anthropometric characteristics: the Iowa Women’s Health Study. Cancer Epidemiol Biomark Prev 19:2229–2237

    Article  Google Scholar 

  253. Wang N, Khankari NK, Cai H et al (2017) Prediagnosis body mass index and waist–hip circumference ratio in association with colorectal cancer survival. Int J Cancer 140:292–301

    Article  CAS  PubMed  Google Scholar 

  254. Farris MS, Courneya KS, Kopciuk KA, McGregor SE, Friedenreich CM (2018) Anthropometric measurements and survival after a prostate cancer diagnosis. Br J Cancer 118:607–610

    Article  PubMed  Google Scholar 

  255. Jackson MD, Tulloch-Reid MK, McCaw-Binns AM et al (2020) Central adiposity at diagnosis may reduce prostate cancer-specific mortality in African-Caribbean men with prostate cancer: 10-year follow-up of participants in a case–control study. Cancer Causes Control 31:651–662

    Article  PubMed  Google Scholar 

  256. Moller H, Roswall N, Van Hemelrijck M et al (2015) Prostate cancer incidence, clinical stage and survival in relation to obesity: a prospective cohort study in Denmark. Int J Cancer 136:1940–1947

    Article  CAS  PubMed  Google Scholar 

  257. Erbaycu AE, Kazanci MN, Biçmen C et al (2010) Initial anthropometric values and nutritional status is related to survival in advanced non-small cell lung cancer. Turk Klin J Med Sci 30:1177–1184

    Google Scholar 

  258. Ferrigno D, Buccheri G (2001) Anthropometric measurements in non-small-cell lung cancer. Support Care Cancer 9:522–527

    Article  CAS  PubMed  Google Scholar 

  259. Liu X, Xu J (2015) Body Mass Index and waistline are predictors of survival for hepatocellular carcinoma after hepatectomy. Med Sci Monit 21:2203–2209

    Article  PubMed  PubMed Central  Google Scholar 

  260. Park S, Han B, Cho JW et al (2014) Effect of nutritional status on survival outcome of diffuse large B-cell lymphoma patients treated with rituximab-CHOP. Nutr Cancer Int J 66:225–233

    Article  CAS  Google Scholar 

  261. Mathur A, Hernandez J, Shaheen F et al (2011) Preoperative computed tomography measurements of pancreatic steatosis and visceral fat: prognostic markers for dissemination and lethality of pancreatic adenocarcinoma. HPB (Oxford) 13:404–410

    Article  Google Scholar 

  262. Anjanappa M, Corden M, Green A et al (2020) Sarcopenia in cancer: risking more than muscle loss. Tech Innov Patient Support Radiat Oncol 16:50–57

    Article  PubMed  PubMed Central  Google Scholar 

  263. Chait A, den Hartigh LJ (2020) Adipose tissue distribution, inflammation and its metabolic consequences, including diabetes and cardiovascular disease. Front Cardiovasc Med 7:22

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  264. Booth AD, Magnuson AM, Fouts J et al (2018) Subcutaneous adipose tissue accumulation protects systemic glucose tolerance and muscle metabolism. Adipocyte 7:261–272

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  265. Hakimi AA, Furberg H, Zabor EC et al (2013) An epidemiologic and genomic investigation into the obesity paradox in renal cell carcinoma. J Natl Cancer Inst 105:1862–1870

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  266. Sanchez A, Furberg H, Kuo F et al (2020) Transcriptomic signatures related to the obesity paradox in patients with clear cell renal cell carcinoma: a cohort study. Lancet Oncol 21:283–293

    Article  CAS  PubMed  Google Scholar 

  267. **ao J, Mazurak VC, Olobatuyi TA, Caan BJ, Prado CM (2018) Visceral adiposity and cancer survival: a review of imaging studies. Eur J Cancer Care 27:e12611

    Article  CAS  Google Scholar 

  268. Akhter S, Pauyo T, Khan M (2019) What Is the difference between a systematic review and a meta-analysis? In: Musahl V, Karlsson J, Hirschmann MT et al (eds) Basic methods handbook for clinical orthopaedic research: a practical guide and case based research approach. Springer, Berlin, pp 331–42

    Chapter  Google Scholar 

  269. Theologides A (1977) Weight loss in cancer patients. CA Cancer J Clin 27:205–208

    Article  CAS  PubMed  Google Scholar 

  270. Ebadi M, Mazurak VC (2014) Evidence and mechanisms of fat depletion in cancer. Nutrients 6:5280–5297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  271. Cole SR, Platt RW, Schisterman EF et al (2010) Illustrating bias due to conditioning on a collider. Int J Epidemiol 39:417–420

    Article  PubMed  Google Scholar 

  272. Mayeda ER, Glymour MM (2017) The obesity paradox in survival after cancer diagnosis: tools for evaluation of potential bias. Cancer Epidemiol Biomark Prev 26:17–20

    Article  Google Scholar 

  273. Sperrin M, Candlish J, Badrick E, Renehan A, Buchan I (2016) Collider bias is only a partial explanation for the obesity paradox. Epidemiology 27:525

    Article  PubMed  PubMed Central  Google Scholar 

  274. Jaspan V, Lin K, Popov V (2021) The impact of anthropometric parameters on colorectal cancer prognosis: a systematic review and meta-analysis. Crit Rev Oncol Hematol 159:103232

    Article  PubMed  Google Scholar 

  275. Cornier MA, Despres JP, Davis N et al (2011) Assessing adiposity: a scientific statement from the American Heart Association. Circulation 124:1996–2019

    Article  PubMed  Google Scholar 

  276. Kocarnik JM, Chan AT, Slattery ML et al (2016) Relationship of prediagnostic body mass index with survival after colorectal cancer: stage-specific associations. Int J Cancer 139:1065–1072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  277. American Cancer Society (2019) MRI for cancer. https://www.cancer.org/treatment/understanding-your-diagnosis/tests/mri-for-cancer.html. Accessed 31 Dec 2021

  278. National Cancer Institute (2019) Computed Tomography (CT) Scans and Cancer. https://www.cancer.gov/about-cancer/diagnosis-staging/ct-scans-fact-sheet. Accessed 31 Dec 2021

Download references

Acknowledgments

This study was supported by, in part, by grants from the National Cancer Institute: K01CA226155 (Cespedes Feliciano) and R01CA251589 (Cespedes Feliciano).

Funding

This study was supported by, in part, by grants from the National Cancer Institute: K01CA226155 and R01CA251589.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. EC, JK, and EMCF participated in the literature search and screening. EC and JK performed study quality assessment. EC conducted data analysis. EC and BJC drafted the manuscript. All authors critically revised the manuscript for important intellectual content and approved the final manuscript.

Corresponding author

Correspondence to Bette J. Caan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This study is a meta‐analysis and do not involve human subjects. IRB review is not required.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 748 kb)

Rights and permissions

Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, E., Kirley, J., Cespedes Feliciano, E.M. et al. Adiposity and cancer survival: a systematic review and meta-analysis. Cancer Causes Control 33, 1219–1246 (2022). https://doi.org/10.1007/s10552-022-01613-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10552-022-01613-7

Keywords

Navigation