Log in

Effect of photobiomodulation therapy on the morphology, intracellular calcium concentration, free radical generation, apoptosis and necrosis of human mesenchymal stem cells—an in vitro study

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

The aim of the study was to investigate the impact of multiwave locked system (MLS M1) emitting synchronized laser radiation at 2 wavelength simultaneous (λ = 808 nm, λ = 905 nm) on the mesenchymal stem cells (MSCs). Human MSCs were exposed to MLS M1 system laser radiation with the power density 195–318 mW/cm2 and doses of energy 3–20 J, in continuous wave emission (CW) or pulsed emission (PE). After irradiation exposure in doses of energy 3 J, 10 J (CW, ƒ = 1000 Hz), and 20 J (ƒ = 2000 Hz), increased proliferation of MSCs was observed. Significant reduction of Fluo-4 Direct™ Ca2+ indicator fluorescence over controls after CW and PE with 3 J, 10 J, and 20 J was noticed. A decrease in fluorescence intensity after the application of radiation with a frequency of 2000 Hz in doses of 3 J, 10 J, and 20 J was observed. In contrary, an increase in DCF fluorescence intensity after irradiation with laser radiation of 3 J, 10 J, and 20 J (CW, ƒ = 1000 Hz and ƒ = 2000 Hz) was also shown. Laser irradiation at a dose of 20 J, emitted at 1000 Hz and 2000 Hz, and 3 J emitted at a frequency of 2000 Hz caused a statistically significant loss of MSC viability. The applied photobiomodulation therapy induced a strong pro-apoptotic effect dependent on the laser irradiation exposure time, while the application of a sufficiently high-energy dose and frequency with a sufficiently long exposure time significantly increased intracellular calcium ion concentration and free radical production by MSCs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The authors confirm that all data are available with the manuscript.

References

  1. Friedenstein AJ, Gorskaja JF, Kulagina NN (1976) Fibroblast precursors in normal and irradiated mouse hematopoietic organs. Exp Hematol 4(5):267–274

    CAS  PubMed  Google Scholar 

  2. Kozisek T, Hamann A, Samuelson L, Fudolig M, Pannier AK (2021) Comparison of promoter, DNA vector, and cationic carrier for efficient transfection of hMSCs from multiple donors and tissue sources. Mol Ther Nucleic Acids 26:81–93. https://doi.org/10.1016/j.omtn.2021.06.018

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Zhan XS, El-Ashram S, Luo DZ, Luo HN, Wang BY, Chen SF, Bai YS, Chen ZS, Liu CY, Ji HQ (2019) A comparative study of biological characteristics and transcriptome profiles of mesenchymal stem cells from different canine tissues. Int J Mol Sci 20(6):1485. https://doi.org/10.3390/ijms20061485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Scarpone M, Kuebler D, Chambers A, De Filippo CM, Amatuzio M, Ichim TE, Patel AN, Caradonna E (2019) Isolation of clinically relevant concentrations of bone marrow mesenchymal stem cells without centrifugation. J Transl Med 17(1):10. https://doi.org/10.1186/s12967-018-1750-x

    Article  PubMed  PubMed Central  Google Scholar 

  5. Drela K, Stanaszek L, Nowakowski A, Kuczynska Z, Lukomska B (2019) Experimental strategies of mesenchymal stem cell propagation: adverse events and potential risk of functional changes. Stem Cells Int 2019:7012692. https://doi.org/10.1155/2019/7012692

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Song YS, Lee HJ, Doo SH, Lee SJ, Lim I, Chang KT, Kim SU (2012) Mesenchymal stem cells overexpressing hepatocyte growth factor (HGF) inhibit collagen deposit and improve bladder function in rat model of bladder outlet obstruction. Cell Transplant 21(8):1641–1650. https://doi.org/10.3727/096368912X637488

    Article  PubMed  Google Scholar 

  7. Eggenhofer E, Benseler V, Kroemer A, Popp FC, Geissler EK, Schlitt HJ, Baan CC, Dahlke MH, Hoogduijn MJ (2012) Mesenchymal stem cells are short-lived and do not migrate beyond the lungs after intravenous infusion. Front Immunol 3:297. https://doi.org/10.3389/fimmu.2012.00297

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Timmers L, Lim SK, Hoefer IE, Arslan F, Lai RC, van Oorschot AA, Goumans MJ, Strijder C, Sze SK, Choo A, Piek JJ, Doevendans PA, Pasterkamp G, de Kleijn DP (2011) Human mesenchymal stem cell-conditioned medium improves cardiac function following myocardial infarction. Stem Cell Res 6(3):206–214. https://doi.org/10.1016/j.scr.2011.01.001

    Article  PubMed  Google Scholar 

  9. Praveen Kumar L, Kandoi S, Misra R, Vijayalakshmi S, Rajagopal K, Verma RS (2019) The mesenchymal stem cell secretome: a new paradigm towards cell-free therapeutic mode in regenerative medicine. Cytokine Growth Factor Rev 46:1–9. https://doi.org/10.1016/j.cytogfr.2019.04.002

    Article  CAS  Google Scholar 

  10. Vizoso FJ, Eiro N, Cid S, Schneider J, Perez-Fernandez R (2017) Mesenchymal stem cell secretome: toward cell-free therapeutic strategies in regenerative medicine. Int J Mol Sci 18(9):1852. https://doi.org/10.3390/ijms18091852

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Heo JS, Kim J (2018) Mesenchymal stem cell-derived exosomes: applications in cell-free therapy. Korean J Clin Lab Sci 50:391–398. https://doi.org/10.15324/kjcls.2018.50.4.391

    Article  Google Scholar 

  12. Huňáková K, Hluchý M, Kuricová M, Ševčík K, Rosocha J, Ledecký V (2018) Role of mesenchymal stem cells—derived exosomes in osteoarthritis treatment. Folia Vet 62(4):19–23. https://doi.org/10.2478/fv-2018-0033

    Article  CAS  Google Scholar 

  13. Cosenza S, Toupet K, Maumus M, Luz-Crawford P, Blanc-Brude O, Jorgensen C, Noël D (2018) Mesenchymal stem cells-derived exosomes are more immunosuppressive than microparticles in inflammatory arthritis. Theranostics 8(5):1399–1410. https://doi.org/10.7150/thno.21072

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Seo Y, Kim HS, Hong IS (2019) Stem cell-derived extracellular vesicles as immunomodulatory therapeutics. Stem Cells Int 2019:5126156. https://doi.org/10.1155/2019/5126156

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Gugliandolo A, Bramanti P, Mazzon E (2019) Mesenchymal stem cells: a potential therapeutic approach for amyotrophic lateral sclerosis? Stem Cells Int 3675627. https://doi.org/10.1155/2019/3675627

  16. Cuascut FX, Hutton GJ (2019) Stem cell-based therapies for multiple sclerosis: current perspectives. Biomedicines 7(2):26. https://doi.org/10.3390/biomedicines7020026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Sisa C, Kholia S, Naylor J, Herrera Sanchez MB, Bruno S, Deregibus MC, Camussi G, Inal JM, Lange S, Hristova M (2019) Mesenchymal stromal cell derived extracellular vesicles reduce hypoxia-ischaemia induced perinatal brain injury. Front Physiol 10:282. https://doi.org/10.3389/fphys.2019.00282

    Article  PubMed  PubMed Central  Google Scholar 

  18. Drohomirecka A, Iwaszko A, Walski T, Pliszczak-Król A, Wąż G, Graczyk S, Gałecka K, Czerski A, Bujok J, Komorowska M (2018) Low-level light therapy reduces platelet destruction during extracorporeal circulation. Sci Rep 8(1):16963. https://doi.org/10.1038/s41598-018-35311-9

    Article  ADS  CAS  PubMed  PubMed Central  Google Scholar 

  19. Mosca RC, Ong AA, Albasha O, Bass K, Arany P (2019) Photobiomodulation therapy for wound care: a potent, noninvasive, photoceutical approach. Adv Skin Wound Care 32(4):157–167. https://doi.org/10.1097/01.ASW.0000553600.97572.d2

    Article  PubMed  Google Scholar 

  20. König A, Missalla S, Valesky EM, Bernd A, Kaufmann R, Kippenberger S, Zöller NN (2018) Effect of near-infrared photobiomodulation therapy in a cellular wound healing model. Photodermatol Photoimmunol Photomed 34(4):279–283. https://doi.org/10.1111/phpp.12390

    Article  PubMed  Google Scholar 

  21. Monici M, Cialdai F, Romano G, Fusi F, Egli M, Pezzatini S, Morbidelli L (2012) The role of physical factors in cell differentiation, tissue repair and regeneration. In: Davies J (ed) Tissue regeneration – from basic biology to clinical, IntechOpen, London, pp 13–34. https://www.intechopen.com/chapters/34630

  22. Vignali L, Cialdai F, Monici M (2011) Effects of MLS laser on myoblast cell line C2C12. Energy for Health 7:12–18. https://ortholazer.com/wp-content/uploads/2021/04/2.OL-Clinical-Studies-Effects-of-MLS-Laser-on-Myoblast-Cell-Line-C2C12.pdf

  23. Etheridge SL, Spencer GJ, Heath DJ, Genever PG (2004) Expression profiling and functional analysis of Wnt signaling mechanisms in mesenchymal stem cells. Stem Cells 22(5):849–860. https://doi.org/10.1634/stemcells.22-5-849

    Article  CAS  PubMed  Google Scholar 

  24. Penfornis P, Pochampally R (2011) Isolation and expansion of mesenchymal stem cells/multipotential stromal cells from human bone marrow. In: Vemuri M, Chase LG, Rao MS (eds) Mesenchymal stem cell assays and applications, 1st edn. Humana Press, New York, pp 11–21. https://doi.org/10.1007/978-1-60761-999-4

    Chapter  Google Scholar 

  25. Ciuffreda MC, Malpasso G, Musarò P, Turco V, Gnecchi M (2016) Protocols for in vitro differentiation of human mesenchymal stem cells into osteogenic, chondrogenic and adipogenic lineages. In: Gnecchi M (ed) Mesenchymal stem cells. Methods in molecular biology, 2nd edn. Human Press, New York, pp 149-158. https://doi.org/10.1007/978-1-4939-3584-0

  26. Ribble D, Goldstein NB, Norris DA, Shellman YG (2005) A simple technique for quantifying apoptosis in 96-well plates. BMC Biotechnol 5:12. https://doi.org/10.1186/1472-6750-5-12

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Mussttaf RA, Jenkins DFL, Jha AN (2019) Assessing the impact of low level laser therapy (LLLT) on biological systems: a review. Int J Radiat Biol 95(2):120–143. https://doi.org/10.1080/09553002.2019.1524944

    Article  CAS  PubMed  Google Scholar 

  28. Chen CH, Wang CZ, Wang YH, Liao WT, Chen YJ, Kuo CH, Kuo HF, Hung CH (2014) Effects of low-level laser therapy on M1-related cytokine expression in monocytes via histone modification. Mediat Inflammb 2014:625048. https://doi.org/10.1155/2014/625048

    Article  CAS  Google Scholar 

  29. de Freitas LF, Hamblin MR (2016) Proposed mechanisms of photobiomodulation or low-level light therapy. IEEE J Sel Top Quant Electron 22(3):7000417. https://doi.org/10.1109/JSTQE.2016.2561201

    Article  CAS  Google Scholar 

  30. Magrini TD, dos Santos NV, Milazzotto MP, Cerchiaro G, da Silva MH (2012) Low-level laser therapy on MCF-7 cells: a micro-Fourier transform infrared spectroscopy study. J Biomed Opt 17(10):101516. https://doi.org/10.1117/1.JBO.17.10.101516

    Article  PubMed  Google Scholar 

  31. Esmaeelinejad M, Bayat M, Darbandi H, Bayat M, Mosaffa N (2014) The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci 29(1):121–129. https://doi.org/10.1007/s10103-013-1289-2

    Article  PubMed  Google Scholar 

  32. Szymanska J, Goralczyk K, Klawe JJ, Lukowicz M, Michalska M, Goralczyk B, Zalewski P, Newton JL, Gryko L, Zajac A, Rosc D (2013) Phototherapy with low-level laser influences the proliferation of endothelial cells and vascular endothelial growth factor and transforming growth factor-beta secretion. J Physiol Pharmacol 64(3):387–391. https://www.jpp.krakow.pl/journal/archive/06_13/pdf/387_06_13_article.pdf

  33. Min KH, Byun JH, Heo CY, Kim EH, Choi HY, Pak CS (2015) Effect of low-level laser therapy on human adipose-derived stem cells: in vitro and in vivo studies. Aesthetic Plast Surg 39(5):778–782. https://doi.org/10.1007/s00266-015-0524-6

    Article  PubMed  Google Scholar 

  34. Ginani F, Soares DM, Barreto MP, Barboza CA (2015) Effect of low-level laser therapy on mesenchymal stem cell proliferation: a systematic review. Lasers Med Sci 30(8):2189–2194. https://doi.org/10.1007/s10103-015-1730-9

    Article  PubMed  Google Scholar 

  35. Hawkins D, Abrahamse H (2006) Effect of multiple exposures of low-level laser therapy on the cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24(6):705–714. https://doi.org/10.1089/pho.2006.24.705

    Article  CAS  PubMed  Google Scholar 

  36. Mognato M, Squizzato F, Facchin F, Zaghetto L, Corti L (2004) Cell growth modulation of human cells irradiated in vitro with low-level laser therapy. Photomed Laser Surg 22(6):523–526. https://doi.org/10.1089/pho.2004.22.523

    Article  PubMed  Google Scholar 

  37. Kouhkheil R, Fridoni M, Piryaei A, Taheri S, Chirani AS, Anarkooli IJ, Nejatbakhsh R, Shafikhani S, Schuger LA, Reddy VB, Ghoreishi SK, Jalalifirouzkouhi R, Chien S, Bayat M (2018) The effect of combined pulsed wave low-level laser therapy and mesenchymal stem cell-conditioned medium on the healing of an infected wound with methicillin-resistant Staphylococcal aureus in diabetic rats. J Cell Biochem 119(7):5788–5797. https://doi.org/10.1002/jcb.26759

    Article  CAS  PubMed  Google Scholar 

  38. Pouriran R, Piryaei A, Mostafavinia A, Zandpazandi S, Hendudari F, Amini A, Bayat M (2016) The effect of combined pulsed wave low-level laser therapy and human bone marrow mesenchymal stem cell-conditioned medium on open skin wound healing in diabetic rats. Photomed Laser Surg 34(8):345–354. https://doi.org/10.1089/pho.2015.4020

    Article  CAS  PubMed  Google Scholar 

  39. Kim K, Lee J, Jang H, Park S, Na J, Myung JK, Kim MJ, Jang WS, Lee SJ, Kim H, Myung H, Kang J, Shim S (2019) Photobiomodulation enhances the angiogenic effect of mesenchymal stem cells to mitigate radiation-induced enteropathy. Int J Mol Sci 20(5):1131. https://doi.org/10.3390/ijms20051131. (Published 2019 Mar 5)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Forman HJ, Ursini F, Maiorino M (2014) An overview of mechanisms of redox signaling. J Mol Cell Cardiol 73:2–9. https://doi.org/10.1016/j.yjmcc.2014.01.0181582-4934.2010.01168

    Article  CAS  PubMed  Google Scholar 

  41. Smyth JT, Hwang SY, Tomita T, DeHaven WI, Mercer JC, Putney JW (2010) Activation and regulation of store-operated calcium entry. J Cell Mol Med 14:2337–2349. https://doi.org/10.1111/j.1582-4934.2010.01168

  42. Helle SC, Kanfer G, Kolar K, Lang A, Michel AH, Kornmann B (2013) Organization and function of membrane contact sites. Biochim Biophys Acta 11:2526–2541. https://doi.org/10.1016/j.bbamcr.2013.01.028

  43. Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C, Pinton P (2018) Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium 69:62–72. https://doi.org/10.1016/j.ceca.2017.05.003

  44. Danese A, Patergnani S, Bonora M, Wieckowski MR, Previati M, Giorgi C, Pinton P (2017) Calcium regulates cell death in cancer: roles of the mitochondria and mitochondria-associated membranes (MAMs). Biochim Biophys Acta Bioenerg 8:615–627. https://doi.org/10.1016/j.bbabio.2017.01.003

  45. Vincze J, Geyer N, Diszházi G, Csernoch L, Bíró T, Jóna I, Dienes B, Almássy J (2018) Laser induced calcium oscillations in fluorescent calcium imaging. Gen Physiol Biophys 37(3):253–261. https://doi.org/10.4149/gpb_2017054

Download references

Acknowledgements

We thank Prof. Marek Synder for biological material sampling.

Funding

This work was supported by the Medical University of Lodz of the research task, No. 502–03/7–127-02/502–54-152.

Author information

Authors and Affiliations

Authors

Contributions

KPM: conceptualization, methodology, investigation, analysis, data curation, writing—original draft preparation, project administration, funding acquisition.

ASG: methodology, investigation, analysis, writing—review and editing, visualization.

BZ: methodology, investigation, analysis, writing—review and editing.

IP: analysis, data curation, writing—review and editing.

MB: conceptualization, methodology, analysis, resources, writing—review and editing, funding acquisition.

JK: conceptualization, methodology, analysis, resources, writing—review and editing, funding acquisition.

All authors have read and agreed to the published version of the manuscript.

Corresponding author

Correspondence to Kamila Pasternak-Mnich.

Ethics declarations

This study was performed in line with the principles of the Declaration of Helsinki. The Ethics Committee of the Medical University of Lodz, Poland, approved the study (RRN/588/14/KB). Informed consent was obtained from all individual participants included in the study.

Conflict of interest

The authors declare no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pasternak-Mnich, K., Szwed-Georgiou, A., Ziemba, B. et al. Effect of photobiomodulation therapy on the morphology, intracellular calcium concentration, free radical generation, apoptosis and necrosis of human mesenchymal stem cells—an in vitro study. Lasers Med Sci 39, 75 (2024). https://doi.org/10.1007/s10103-024-04008-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10103-024-04008-z

Keywords

Navigation