Log in

The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums

  • Original Article
  • Published:
Lasers in Medical Science Aims and scope Submit manuscript

Abstract

Delayed wound healing is one of the most challenging complications of diabetes mellitus (DM) in clinical medicine. This study has aimed to evaluate the effects of low-level laser therapy (LLLT) on human skin fibroblasts (HSFs) cultured in a high glucose concentration. HSFs were cultured either in a concentration of physiologic glucose (5.5 mM/l) or high glucose media (11.1 and15 mM/l) for either 1 or 2 weeks after which they were subsequently cultured in either the physiologic glucose or high concentration glucose media during laser irradiation. LLLT was carried out with a helium–neon (He–Ne) laser unit at energy densities of 0.5, 1, and 2 J/cm2, and power density of 0.66 mW/cm2 on 3 consecutive days. HSFs’ viability and proliferation rate were evaluated with the dimethylthiazol-diphenyltetrazolium bromide (MTT) assay. The LLLT at densities of 0.5 and 1 J/cm2 had stimulatory effects on the viability and proliferation rate of HSFs cultured in physiologic glucose (5.5 mM/l) medium compared to their control cultures (p = 0.002 and p = 0.046, respectively). All three doses of 0.5, 1, and 2 J/cm2 had stimulatory effects on the proliferation rate of HSFs cultured in high glucose concentrations when compared to their control cultures (p = 0.042, p = 0.000, and p = 0.000, respectively). This study showed that HSFs originally cultured for 2 weeks in high glucose concentration followed by culture in physiologic glucose during laser irradiation showed enhanced cell viability and proliferation. Thus, LLLT had a stimulatory effect on these HSFs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Robertson RP (2004) Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes. J Biol Chem 279:42351–42354. doi:10.1074/jbc.R400019200, Epub 2004 Oct 8

    Article  CAS  PubMed  Google Scholar 

  2. Alberti G, Zimmet P, Shaw J, Bloomgarden Z, Kaufman F, Silink M (2004) Type 2 diabetes in the young: the evolving epidemic: the International diabetes federation consensus workshop. Diabetes Care 27:1798–1811. doi:10.2337/diacare.27.7.1798

    Article  PubMed  Google Scholar 

  3. De Fronzo R, Bonadonna RC, Ferrannini E (1992) Pathogenesis of NIDDM: a balanced overview. Diabetes Care 15:318–368. doi:10.2337/diacare.15.4.508

    Article  Google Scholar 

  4. Groop LC, Widen E, Ferrannini E (1993) Insulin resistance and insulin deficiency in pathogenesis of type 2 (non-insulin dependent) diabetes mellitus: errors of metabolism or of methods ? Diabetologia 36:1326–1331. doi:10.1007/BF00400814

    Article  CAS  PubMed  Google Scholar 

  5. Shaw JE, Sicree RA, Zimmet PZ (2010) Global estimates of the prevalence of diabetes for 2010 and 2030. Diabetes Care 87:4–14

    CAS  Google Scholar 

  6. Goodson WH, Hunt TK (1979) Wound healing and the diabetic patient. Surg Gynerol Obstet 19:600–608

    Google Scholar 

  7. Greenhalgh DG (2003) Wound healing and the diabetes mellitus. Clin Plast Surg 30:37–45. doi:10.1016/S0094-1298(02)00066-4

    Article  PubMed  Google Scholar 

  8. Kern P, Moczar M, Robert L (1979) Biosynthesis of skin collagens in normal and diabetic mice. Biochem J 102:337–345

    Google Scholar 

  9. Franzen LE, Roberg K (1995) Impaired connective tissue repair in streptozotocin induced diabetes shows ultrastructoral signs of impaired contraction. J Surg Res 58:407–414

    Article  CAS  PubMed  Google Scholar 

  10. Brown DL, Kane CD, Chernausek SD, Greenhalgh DG (1997) Differential expression and localization of insulin-like growth factors l and II in cutaneous wound. Am J Pathol 151:715–724

    CAS  PubMed  Google Scholar 

  11. Algenstaedt P, Schaefer C, Biermann T, Hamann A, Schwarzloh B, Greten H, Rüther W, Hansen-Algenstaedt N (2003) Microvascular alterations in diabetic mice correlate with level of hyperglycemia. Diabetes 52:542–549. doi:10.1016/S0736-0266(03)00060-3

    Article  CAS  PubMed  Google Scholar 

  12. Loots MAM, Lamme EN, Mekkes JR, Bos JD, Middelkoop E (1999) Cultured fibroblasts from chronic diabetic wounds on the lower extremity (non-insulin-dependent diabetes mellitus) show disturbed proliferation. Arch Dermatol Res 291:93–99. doi:10.1007/s004030050389

    Article  CAS  PubMed  Google Scholar 

  13. Benazzoug Y, Borchiellini C, Labat-Robert J, Robert L, Kern P (1998) Effect of high- glucose concentration on the expression collagens and fibronectin by fibroblasts in culture. Exp Gerontol 33:445–455

    Article  CAS  PubMed  Google Scholar 

  14. Yevdokimova NY (2003) High glucose–induced alterations of extracellular matrix of human skin fibroblasts are not dependent on TSP-1–TGF β 1 pathway. J Diabetes Complications 17:355–364. doi:10.1016/S1056-8727(02)00225-8

    Article  PubMed  Google Scholar 

  15. Deveci M, Gilmont RR, Dunham WR, Mudge BP, Smith DJ, Marcelo CL (2005) Glutathione enhances fibroblast collagen concentration and protects keratinocytes from apoptosis in hyperglycaemic culture. Br J Dermatol 152:217–224. doi:10.1111/j.1365-2133.2004.06329.x

    Article  CAS  PubMed  Google Scholar 

  16. Grossman N, Schneid N, Reuveni H, Holery S, Lubart (1998) 780 nm low-power diode laser irradiation stimulates proliferation of keratinocyte culture, involvement of reactive oxygen species. Lasers Surg Med 22:212–218

    Article  CAS  PubMed  Google Scholar 

  17. Almeida-Lopez L, Rigau J, Zangaro RA, Guidugli-Neto J, Jaeger MM (2001) Comparison of low-level laser therapy effects on cultured human gingival fibroblasts proliferation using different irradiance and same fluence. Lasers Surg Med 29:179–184

    Article  Google Scholar 

  18. Hawkin DH, Abrahamse H (2006) The role of laser fluence a in cell viability, proliferation, and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 36:74–83. doi:10.1117/12.641172

    Article  Google Scholar 

  19. Evans DH, Abrahamse H (2008) Efficacy of three different laser wavelengths for in vitro wound healing. Photodermol Photoimmunol Photomed 24:199–210

    Article  Google Scholar 

  20. Vinck EM, Gaginie BJ, Cornelissen MJ, Declerecq HA, Cambier DC (2005) Green light emitting diode irradiation enhances fibroblast growth impaired by high glucose level. Photomed Laser Surg 23:167–217. doi:10.1089/pho.2005.23.167

    Article  CAS  PubMed  Google Scholar 

  21. Houreld NN, Abrahamse H (2007) In vitro exposure of wounded diabetic fibroblast cells to a helium–neon laser at 5 and 16 J/cm2. Photomed Laser Surg 25:78–84. doi:10.1089/pho.2007.990

    Article  CAS  PubMed  Google Scholar 

  22. Houreld N, Abrahamse H (2007) Irradiation with a 632.8 nm helium–neon laser with 5 J/cm2 stimulates proliferation and expression of interleukin-6 in diabetic wounded fibroblast cells. Diabetes Technol Ther 9(5):451–459. doi:10.1089/dia.2007.0203

    Article  CAS  PubMed  Google Scholar 

  23. Houreld NN, Abrahamse H (2007) Laser light influence cellular viability and proliferation in diabetic-wounded fibroblast cells in a dose- and wavelength dependent manner. Lasers Med Sci 23(1):11–18. doi:10.1007/s10103-007-0445-y

    Article  PubMed  Google Scholar 

  24. Mirzaei M, Bayat M, Mosafa N, Mohsenifar Z, Piryaei A, Farokhi B, Rezaei F, Sadeghi Y, Rakhshan M (2007) Effect of low-level laser therapy on skin fibroblasts of streptozotocine-diabetic rats. Photomed Laser Surg 25:517–523. doi:10.1089/pho.2007.2098

    Article  Google Scholar 

  25. Pourreau-Schneider N, Ahmed A, Soudry M, Jacquemier J, Kopp F, Franquin JC, Martin PM (1990) Helium–neon laser treatment transforms fibroblasts into myofibroblasts. Am J Pathol 137:171–178

    CAS  PubMed  Google Scholar 

  26. Medrado AR, Puyliese LS, Reis SR, Andrade ZA (2003) Influence of low level laser therapy on wound healing and its biological action upon myofibroblasts. Lasers Surg Med 32:239–244. doi:10.1002/lsm.10126

    Article  PubMed  Google Scholar 

  27. Hue WP, Wang JJ, Yu CL, Lan CC, Chen GS, Yu HS (2007) Helium–neon laser irradiation stimulates cell proliferation through photostimulatory effects in mitochondria. J Invest Dermatol 127(8):2048–2057

    Article  Google Scholar 

  28. Do Nascimento RX, Callera F (2006) Low-Level laser therapy at difference energy densities (0.1–2.0 J/cm2) and its effects on the capacity of human long-term cryopreserved peripheral blood progenitor cells for the growth of colony-forming units. Photomed Laser Surg 24:601–604. doi:10.1089/pho.2006.24.601

    Article  PubMed  Google Scholar 

  29. Prabhu V, Rao SB, Rao NB, Aithal KB, Kumar P, Mahato KK (2010) Development and evaluation of fiber optic probe-based helium–neon low-level laser therapy system for tissue regeneration: an in vivo experimental study. Photochem Photobiol 86:1364–1372. doi:10.1111/j.1751-1097.2010.00791.x

    Article  CAS  PubMed  Google Scholar 

  30. Van Breugel HH, Bar PR (1992) Power density and exposure time of He–Ne laser irradiation are more important than total energy dose in photo-biomodulation of human fibroblasts in vitro. Lasers Surg Med 12:528–537. doi:10.1002/lsm.1900120512

    Article  PubMed  Google Scholar 

  31. Hawkins DH, Abrahamse H (2006) The role of laser fluence in cell viability, proliferation and membrane integrity of wounded human skin fibroblasts following helium–neon laser irradiation. Lasers Surg Med 38:78–83. doi:10.1002/lsm.20271

    Article  Google Scholar 

  32. Hawkins D, Abrahamse H (2005) Biological effects of helium–neon laser irradiation on normal and wounded human skin fibroblasts. Photomed Laser Surg 23(3):251–259. doi:10.1089/pho.2005.23.251

    Article  CAS  PubMed  Google Scholar 

  33. Hawkins DH, Abrahamse H (2006) Effects of multiple exposures of low-level laser therapy on cellular responses of wounded human skin fibroblasts. Photomed Laser Surg 24:705–714. doi:10.1089/pho.2006.24.705

    Article  CAS  PubMed  Google Scholar 

  34. Karu T (1989) Photobiology of low-power laser effects. Heal Phys 56:691–704. doi:10.1097/00004032-198905000-00015

    Article  CAS  Google Scholar 

  35. Dadpay M, Sharifian Z, Bayat M, Bayat M, Dabbagh A (2012) Effect of pulsed infra-red low level laser irradiation on open skin wound healing of healthy and strepzotocin-induced diabetic rats by a biomechanical evaluation. J Photochem Photobiol B 111:1–8, Epub 2012 Mar 16

    Article  CAS  PubMed  Google Scholar 

  36. Houreld NN, Abrahamse H (2007) Effectiveness of helium–neon laser irradiation on viability and cytotoxicity of diabetic-wounded fibroblast cells. Photomed Laser Surg 25(6):474–481. doi:10.1089/pho.2007.1095

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank the late Mrs. Jamileh Rezaei. We also extend our thanks to the Vice Chancellor of Research at Shahid Beheshti University of Medical Sciences, Tehran, Iran, for financial support.

Conflict of interest

No competing financial interests exist.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Bayat.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Esmaeelinejad, M., Bayat, M., Darbandi, H. et al. The effects of low-level laser irradiation on cellular viability and proliferation of human skin fibroblasts cultured in high glucose mediums. Lasers Med Sci 29, 121–129 (2014). https://doi.org/10.1007/s10103-013-1289-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10103-013-1289-2

Keywords

Navigation