Log in

Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine-capped Au@Ag core-shell nanoparticles

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

Bimetallic nanoparticles (BMNPs) have received considerable attention due to their distinctive properties when compared to the corresponding monometallic NPs and their bulk counterpart. In this report, the formation of gold@silver core-shell nanoparticles (Au@AgCSNPs) was achieved via a one-pot synthetic approach after mixing 1:1 M solutions of Au and Ag ions. L-cysteine was used as reducing as well as cap** agent for preparing Au@AgCSNPs. Ultraviolet-visible (UV-Vis) spectroscopy was employed for surface plasmon study while Fourier-transform infrared (FTIR) spectroscopy gave insights for interaction of NPs with specific functionality of the cap** material. Surface morphology of the fabricated Au@AgCSNPs, probed by atomic force microscopy (AFM), indicated an average height of nanoparticles around 43 ± 3 nm and their crystallinity were confirmed via powder X-ray diffraction (PXRD) study. Significantly, the as synthesized Au@AgCSBMNPs were fabricated onto the conductive surface of glassy carbon electrode (GCE), stabilized with nafion, and then utilized as an extremely sensitive/greatly selective sensor for voltammetric detection of Hg2+. The developed sensor responded linearly to Hg2+ between 0.001 and 19 ppb with limit of detection (LOD) as low as 0.0001 ppb (0.1 ppt). Finally, the sensor was effectively applied for Hg2+ detection in different groundwater samples and is workable at concentrations undetectable by several sensing tools.

.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Solano-Umaña V, Vega-Baudrit JR, González-Paz R (2015) The new field of the nanomedicine. Int J Appl Sci Technol 5:79–88

    Google Scholar 

  2. Ghosh SK, Mandal M, Kundo S, Nath S, Pal T (2004) Bimetallic Pt–Ni nanoparticles can catalyze reduction of aromatic nitro compounds by sodium borohydride in aqueous solution. Appl Catal A Gen 268(1–2):61–66

    Article  CAS  Google Scholar 

  3. Shin Y, Bae IT, Arey BW, Exarhos GJ (2013) Facile stabilization of gold-silver alloy nanoparticles on cellulose nanocrystal. Langmuir 29:4901–4907

    Article  CAS  Google Scholar 

  4. Moghimi N, Mohapatra M, Leung KT (2015) Bimetallic nanoparticles for arsenic detection. Anal Chem 87(11):5546–5552

    Article  CAS  PubMed  Google Scholar 

  5. An Y, Li T, ** Z, Dong M, **a H, Wang X (2010) Effect of bimetallic and polymer-coated Fe nanoparticles on biological denitrification. Bioresour Technol 101(24):9825–9828

    Article  CAS  PubMed  Google Scholar 

  6. Zaleska-Medynska A, Marchelek M, Diak M, Grabowska E (2016) Noble metal-based bimetallic nanoparticles: the effect of the structure on the optical, catalytic and photocatalytic properties. Adv Colloid Interf Sci 229:80–107

    Article  CAS  Google Scholar 

  7. Wen J, Tian Y (2016) The synthesis of Cu-Ag core-shell bimetallic nanoparticles for IC bonding, 17th International Conference on Electronic Packaging Technology, 16–19 August, Wuhan, China

  8. Boote BW, Byun H, Kim JH (2014) Silver-gold bimetallic nanoparticles and their applications as optical materials. J Nanosci Nanotechnol 14(2):1563–1577

    Article  CAS  PubMed  Google Scholar 

  9. Reza M, Hosseini M, Jamalabadi H, Najafi M (2013) Bimetallic nanoparticles as a novel chemiresistor coating. J Iran Chem Soc 10:783–789

    Article  CAS  Google Scholar 

  10. Zhang C, Chen BQ, Li ZY (2015) Surface plasmon resonance in bimetallic core−shell nanoparticles. Phys Chem C 119(29):16836–16845

    Article  CAS  Google Scholar 

  11. Iswarya CN, Daniel SCGK, Sivakumar M (2017) Studies on l-histidine capped silver and gold nanoparticle for dopamine detection. Mater Sci Eng C 75:393–401

    Article  CAS  Google Scholar 

  12. Selvakannan PR, Swami A, Srisathiyanarayanan D, Shirude PS, Pasricha R, Mandale AB, Sastry M (2004) Synthesis of aqueous Au core-Ag shell nanoparticles using tyrosine as a pH-dependent reducing agent and assembling phase-transferred silver nanoparticles at the air-water interface. Langmuir 20(18):7825–7836

    Article  CAS  PubMed  Google Scholar 

  13. Sharma B, Rabina MK (2015) Biologically active l-cysteine as a reducing/cap** agent for controlled tuning of gold nanoparticles. J Alloys Compd 649:11–18

    Article  CAS  Google Scholar 

  14. Chai F, Wang C, Wang T, Ma Z, Su Z (2010) L-cysteine functionalized gold nanoparticles for the colorimetric detection of Hg2+ induced by ultraviolet light. Nanotechnology 21(2):025501

    Article  PubMed  CAS  Google Scholar 

  15. Sirajuddin NA, Afridi HI, Hassan SS, Shah A, Niaz A (2011) Direct synthesis and stabilization of bi-sized cysteine-derived gold nanoparticles: reduction catalyst for methylene blue. J Iran Chem Soc 8(S1):S34–S43

    Article  CAS  Google Scholar 

  16. Aryal S, Dharmaraj BKCRN, Bhattarai N, Kim CH, Ki HY (2006) Spectroscopic identification of S-Au interaction in cysteine capped gold nanoparticles. Spectrochim Acta A 63(1):160–163

    Article  CAS  Google Scholar 

  17. Wang WX (2012) Biodynamic understanding of mercury accumulation in marine and freshwater fish. Adv Environ Res 1(1):15–35

    Article  CAS  Google Scholar 

  18. Bernhoft RA (2012) Mercury toxicity and treatment: a review of the literature. J Environ Pub Health Article ID 460508:1–10

  19. Bruno CJ, Luiz CSFF, Luiz HMJ, Silvéria PNS, Edenir RPF, Orlando FF (2011) Development of carbon nanotubes paste electrode modified with cross-linked chitosan for cadmium (II) and mercury (II) determination. J Electroanal Chem 660:209–216

    Article  CAS  Google Scholar 

  20. Memon AG, Zhou X, Liu J, Wang R, Liu L, Yu B, He M, Shi H (2017) Utilization of unmodified gold nanoparticles for label-free detection of mercury (II): insight into rational design of mercury-specific oligonucleotides. J Hazard Mater 321:417–423

    Article  CAS  PubMed  Google Scholar 

  21. Lokhande AC, Shinde NM, Shelke A, Babar PT, Kim JH (2017) Reliable and reproducible colorimetric detection of mercury ions (Hg2+) using green synthesized optically active silver nanoparticles containing thin film on flexible plastic substrate. J Solid State Electrochem 21(9):2747–2751

    Article  CAS  Google Scholar 

  22. Silva MF, Tóth IV, Range AO (2006) Determination of mercury in fish by cold vapor atomic absorption spectrophotometry using a multicommuted flow injection analysis system. Anal Sci 22(6):861–864

    Article  CAS  PubMed  Google Scholar 

  23. Ebdon L, Foulkes MES, Roux SL, Muñoz-Olivas R (2002) Cold vapor atomic fluorescence spectrometry and gas chromatography-pyrolysis-atomic fluorescence spectrometry for routine determination of total and organometallic mercury in food samples. Analyst 127(8):1108–1114

    Article  CAS  PubMed  Google Scholar 

  24. Passariello B, Barbaro M, Quaresima S, Casciello A, Marabini A (1996) Determination of mercury by inductively coupled plasma—mass spectrometry. Microchem J 54(4):348–354

    Article  CAS  PubMed  Google Scholar 

  25. Zhu X, Alexandratos SD (2007) Determination of trace levels of mercury in aqueous solutions by inductively coupled plasma atomic emission spectrometry: elimination of the memory effect. Microchem J 86(1):37–41

    Article  CAS  Google Scholar 

  26. Gao C, Huang XJ (2013) Voltammetric determination of mercury (II). Trends Anal Chem 51:1–12

    Article  CAS  Google Scholar 

  27. Walcarius A, Devoy J, Bessiere J (2000) Silica-modified electrode for the selective detection of mercury. J Solid State Electrochem 4(6):330–336

    Article  CAS  Google Scholar 

  28. Shahar T, Tal N, Mandler D (2013) The synthesis and characterization of thiol-based aryl diazonium modified glassy carbon electrode for the voltammetric determination of low levels of Hg(II). J Solid State Electrochem 17(6):1543–1552

    Article  CAS  Google Scholar 

  29. Yu J, Guan H, Chi D (2017) An amperometric glucose oxidase biosensor based on liposome microreactor-chitosan nanocomposite-modified electrode for determination of trace mercury. J Solid State Electrochem 21(4):1175–1183

    Article  CAS  Google Scholar 

  30. Gayathri J, Selvan KS, Narayanan SS (2018) A novel sensor for the determination of Hg2+ in waters based on octadentate ligand immobilized multi-walled carbon nanotube attached to paraffin wax impregnated graphite electrodes (PIGE). 22:2879–2888

  31. Kassab LRP, de Araújo CB, Kobayashi RA, De RD, Pinto A, da Silva DM (2007) Influence of silver nanoparticles in the luminescence efficiency of Pr3+-doped tellurite glasses. J Appl Phys 102(10):103515

    Article  CAS  Google Scholar 

  32. Kassab LRP, Bomfim FA, Martinelli JR (2009) Energy transfer and frequency up conversion in Yb3+–Er3+-doped PbO-GeO2 glass containing silver nanoparticles. J Appl Phys B94:239–242

    Article  CAS  Google Scholar 

  33. Ghadimi A, Metselaar HSC, Lotfizadehdehkordi B (2015) Nanofluid stability optimization based on UV-Vis spectrophotometer measurement. J Engineer Sci Tech Special Issue on SOMCHE 2014 & RSCE 2014 Conference, January 32 – 40

  34. Kirubha E, Palanisamy PK (2014) Green synthesis, characterization of Au–Ag core–shell nanoparticles using gripe water and their applications in nonlinear optics and surface enhanced Raman studies. Adv Nat Sci Nanosci Nanotechnol 5:1–6

    Article  CAS  Google Scholar 

  35. Mandal S, Gole A, Lala N, Gonnade R, Ganvir V, Sastry M (2001) Studies on the reversible aggregation of cysteine-capped colloidal silver particles interconnected via hydrogen bonds. Langmuir 17(20):6262–6268

    Article  CAS  Google Scholar 

  36. Nagaonkar D, Rai M (2015) Sequentially reduced biogenic silver-gold nanoparticles with enhanced antimicrobial potential over silver and gold monometallic nanoparticles. Adv Mater Lett 6(4):334–341

    Article  CAS  Google Scholar 

  37. Li N, Wang C, Li T, Latimer B, Liu Z, Tang Z (2018) Au@Ag core-shell nanoparticles supported on carbon nanotubes as promising catalysts for oxygen electroreduction. Int J Electrochem Sci 13:6756–6770

    Article  CAS  Google Scholar 

  38. Hassan SS, Nafady A, Sirajuddin SAR, Kalhoro MS, Abro MI, Sherazi STH (2015) Ultra-trace level electrochemical sensor for methylene blue dye based on nafion stabilized ibuprofen derived gold nanoparticles. Sensors Actuators B Chem 208:320–326

    Article  CAS  Google Scholar 

  39. Tagar ZA, Sirajuddin MN, Agheem MH, Junejo Y, Hassan SS, Kalwar NH, Khattak MI (2011) Selective, simple and economical lead sensor based on ibuprofen derived silver nanoparticles. Sensors Actuators B Chem 157(2):430–437

    Article  CAS  Google Scholar 

  40. Liao Y, Li Q, Yue Y, Shao S (2015) Selective electrochemical determination of trace level copper using a salicylaldehyde azine/MWCNTs/nafion modified pyrolytic graphite electrode by the anodic strip** voltammetric method. RSC Adv 5(5):3232–3238

    Article  CAS  Google Scholar 

  41. Hassan SS, Sirajuddin, Solangi AR, Kazi TG, Kalhoro MS, Junejo Y, Tagar ZA, Kalwar NH (2012) Nafion stabilized ibuprofen–gold nanostructures modified screen printed electrode as arsenic(III) sensor. J Electroanal Chem 682:77–82

    Article  CAS  Google Scholar 

  42. Shaikh T, Nafady A, Talpur FN, Sirajuddin AMH, Shah MR, Sherazi STH, Soomro RA, Siddiqui S (2015) Tranexamic acid derived gold nanoparticles modified glassy carbon electrode as sensitive sensor for determination of nalbuphine. Sensors Actuators B Chem 211:359–369

    Article  CAS  Google Scholar 

  43. Ugo P, Cavalieri F, Rudello D, Moretto L, Argese E (2001) Nafion coated electrodes as voltammetric sensors for iron analysis in sediments and pore waters: an example from the Lagoon of Venice. Sensors 1(4):102–113

    Article  CAS  Google Scholar 

  44. Rahman NA, Yusof NA, Maamor NAM, Noor SMM (2017) Development of electrochemical sensor for simultaneous determination of Cd(II) and Hg(II) ion by exploiting newly synthesized cyclic dipeptide. Int J Electrochem Sci 7:186–196

    Google Scholar 

  45. **ong E, Zhang X, Liu Y, Zhou J, Yu P, Chen J (2016) An electrochemical biosensor for sensitive detection of Hg2+ based on exonuclease III-assisted target recycling and hybridization chain reaction amplification strategies. Anal Methods 8(9):2106–2111

    Article  CAS  Google Scholar 

  46. Mersal GAM, Ibrahim MM (2013) Voltammetric studies of lead at a new carbon paste microelectrode modified with N(2-isopropylphenyl)-2-thioimidazole and its trace determination in water by square wave voltammetry. Int J Electrochem Sci 8:5944–5960

    CAS  Google Scholar 

  47. Manivannan S, Ramaraj R (2009) Core–shell Au/Ag nanoparticles embedded in silicate sol–gel network for sensor application towards hydrogen peroxide. J Chem Sci 121(5):735–743

    Article  CAS  Google Scholar 

  48. Toshima N, Yonezawa T (1998) Bimetallic nanoparticles-novel materials for chemical and physical applications. New J Chem 22(11):1179–1201

    Article  CAS  Google Scholar 

  49. Nolan MA, Kounaves SP (1999) Microfabricated array of iridium microdisks as a substrate for direct determination of Cu2+ or Hg2+ using square-wave anodic strip** voltammetry. Anal Chem 71(16):3567–3573

    Article  CAS  Google Scholar 

  50. Cinti S, Santella F, Moscone D, Arduini F (2016) Hg2+ detection using a disposable and miniaturized screen-printed electrode modified with nanocomposite carbon black and gold nanoparticles. Environ Sci Pollut Res 23(9):8192–8199

    Article  CAS  Google Scholar 

  51. Yasri NG, Sundramoorthy AK, Chang WJ, Gunasekaran S (2014) Highly selective mercury detection at partially oxidized graphene/ poly (3,4-Ethylenedioxythiophene): poly (styrenesulfonate) nanocomposite film-modified electrode. Front Mater 1:1–10

    Article  Google Scholar 

  52. Cai F, Zhu Q, Zhao K, Deng A, Li J (2015) Multiple signal amplified electrochemiluminescenct immunoassay for Hg2+ using graphene-coupled quantum dots and gold nanoparticles-labeled horse reddish peroxidase. Environ Sci Technol 49(8):5013–5020

    Article  CAS  PubMed  Google Scholar 

  53. Guha KS, Mascarenhas RJ, Thomas T, D’Souza OJ (2014) Differential pulse anodic strip** voltammetric determination of Hg2+ at poly(Eriochrome black T)-modified carbon paste electrode. Ionics 20(6):849–856

    Article  CAS  Google Scholar 

  54. Kanchana P, Sudhan N, Anandhakumar S, Mathiyarasu J, Manisankar P, Sekar C (2015) Electrochemical detection of mercury using biosynthesized hydroxyapatite nanoparticles modified glassy carbon electrodes without preconcentration. RSC Adv 5(84):68587–68594

    Article  CAS  Google Scholar 

  55. Gen X, Zhao H, Cken S, Quan X (2015) Electrochemical DNA sensor for specific detection of picomolar Hg(II) based on exonuclease III-assisted recycling signal amplification. Analyst. 140(6):2029–2036

    Article  CAS  Google Scholar 

  56. Laffont L, Hezard T, Gros P, Heimbürger L-E, Sonke JE, Behra P, Evrard D (2015) Mercury(II) trace detection by a gold nanoparticle-modified glassy carbon electrode using square-wave anodic strip** voltammetry including a chloride desorption step. Talanta 141:26–32

    Article  CAS  PubMed  Google Scholar 

  57. Wu Z, Jiang L, Xu C, Ye Y, Wang X (2012) Synthesis of mesoporous NiO nanosheet and its application on mercury (II) sensor. J Solid State Electrochem 16(10):3171–3177

    Article  CAS  Google Scholar 

  58. Zhou L, **ong W, Liu S (2015) Preparation of a gold electrode modified with au–TiO2 nanoparticles as an electrochemical sensor for the detection of mercury (II) ions. J Mater Sci 50(2):769–776

    Article  CAS  Google Scholar 

  59. Khan Z, Obaid AY (2016) Seedless, copper-induced synthesis of stable Ag/Cu bimetallic nanoparticles and their optical properties. RSC Adv 6(35):29116–29126

    Article  CAS  Google Scholar 

  60. Wang CY, Wang ZX, Guan J, Hu XY (2006) Voltammetric determination of meloxicam in pharmaceutical formulation and human serum at glassy carbon electrode modified by cysteic acid formed by electrochemical oxidation of l-cysteine. Sensors 6(9):1139–1152

    Article  CAS  Google Scholar 

Download references

Funding

The Higher Education Commission financially supported the study. The International Scientific Partnership Program (ISPP) at King Saud University funded of this research work through ISPP #0022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ayman Nafady or Sirajuddin.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

A facile method was developed for synthesis of bimetallic Au@Ag core-shell nanoparticles.

These nanoparticles were used as highly sensitive and selective sensor for Hg2+.

Fabricated voltammetric sensor was successfully applied for Hg2+ detection in natural water samples.

Electronic supplementary material

ESM 1

(DOCX 650 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siddiqui, S., Nafady, A., El-Sagher, H.M. et al. Sub-ppt level voltammetric sensor for Hg2+ detection based on nafion stabilized l-cysteine-capped Au@Ag core-shell nanoparticles. J Solid State Electrochem 23, 2073–2083 (2019). https://doi.org/10.1007/s10008-019-04298-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04298-2

Keywords

Navigation