Log in

Development and applications of deep eutectic solvents in different chromatographic techniques

  • Review
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Deep eutectic solvents (DESs) being inexpensive, easy to prepare, biocompatible, biodegradable and environmentally benign have aroused as the most propitious greener solvents for designing novel analytical methods of chemical analysis specially covering almost major fields of chromatography. This review article is majorly concerned with the analytical evaluation of DESs as new generation solvents for use as (a) modifier of silica gel surface via silylation reaction to create new stationary phases, (b) mobile phase (or developer) in liquid chromatography and (c) mobile phase additive to improve chromatographic performance. The sequential evolution of DESs has been briefly presented in tabular form since their beginning from the development of choline chloride/urea eutectic mixture in 2003. It has been observed that three more important properties (ionic conductivity, polarity and viscosity) of DESs can be adjusted to the desired level by proper selection of molar composition of hydrogen bond donor and hydrogen bond acceptor and water content. In this review, we present the recent applications of DESs in chromatography covering the period of the last two decades for assessing their suitability as a new class of green solvents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Scheme 1

Similar content being viewed by others

References

  1. Abbott AP, Capper G, Davies DL, Rasheed RK, Tambyrajah V (2003) Novel solvent properties of choline chloride/urea mixtures. Chem Commun 1:70–71

    Article  Google Scholar 

  2. Choi YH, van Spronsen J, Dai Y, Verberne M, Hollmann F, Arends IWCE, Witkamp G-J, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156(4):1701–1705

    Article  CAS  Google Scholar 

  3. Cai T, Qiu H (2019) Application of deep eutectic solvents in chromatography: a review. Trends Anal Chem 120:15623. https://doi.org/10.1016/j.trac.2019.115623

    Article  CAS  Google Scholar 

  4. El Achkar, T, Greige-Gerges H, Fourmentin S, (2021) Basics and properties of deep eutectic solvents: a review. Environ Chem Lett 19:3397–3408. https://doi.org/10.1007/s10311-021-01225-8

    Article  CAS  Google Scholar 

  5. Farooq MQ, Abbasi NM, Anderson JL (2020) Deep eutectic solvents in separations: methods of preparation, polarity, and applications in extractions and capillary electrochromatography. J Chromatogr A 1633:461613. https://doi.org/10.1016/j.chroma.2020.461613

    Article  CAS  Google Scholar 

  6. Płotka-Wasylka J, Rutkowska M, de la Guardia M (2021) Are deep eutectic solvents useful in chromatography? A short review. J Chromatogr A 1639:461918. https://doi.org/10.1016/j.chroma.2021.461918

    Article  CAS  Google Scholar 

  7. Lenca N, Poole CF (2017) Liquid chromatography with room temperature ionic liquids. J Planar Chromatogr-Mod TLC 30:97–105. https://doi.org/10.1556/1006.2017.30.2.2

    Article  CAS  Google Scholar 

  8. Ullah Q, Khan SA, Mohammad A, (2021) Applications of green solvents in thin-layer chromatography (TLC): an overview. J Planar Chromatogr-Mod TLC 34:5–29

    Article  CAS  Google Scholar 

  9. **n K, Roghair I, Gallucci F, van Sint AM (2021) Total vapor pressure of hydrophobic deep eutectic solvents: experiments and modelling. J Mol Liq 325:115227

    Article  CAS  Google Scholar 

  10. Shishov A, Gorbunov A, Moskvin L, Bulatov A (2020) Decomposition of deepeutectic solvents based on choline chloride and phenol in aqueous phase. J Mol Liq 301:112380

    Article  CAS  Google Scholar 

  11. Niroumandpassand A, Javadi A, Afshar Mogaddam MR (2021) Solution decomposition of deep eutectic solvents in pH-induced solidification of floating organic droplet homogeneous liquid-liquid microextraction for the extraction of pyrethroid pesticides from milk. Anal Methods 13:1747–1756

    Article  CAS  Google Scholar 

  12. Ma C, Laaksonen A, Liu C, Lu X, Ji X (2018) The peculiar effect of water on ionic liquids and deep eutectic solvents. Chem Soc Rev 47:8685–8720

    Article  CAS  Google Scholar 

  13. Wang T, Wang Q, Guo Q, Li P, Yang HA (2021) Hdrophobic deep eutectic solvents-based integrated method for efficient and green extraction and recovery of natural products from Rosmarinus officinalis leaves, Ginkgo biloba leaves and Salvia miltiorrhiza roots. Food Chem 363:130282

    Article  CAS  Google Scholar 

  14. Feng Q, Tong L, Guo H, Ma C, Qin F, **ong Z (2021) Tailor-made deep eutectic solvents extraction combined with UPLC–MS/MS determination of icarrin and icarisid II in rat plasma and its comparative pharmacokinetic application. J Pharm Biomed Anal 199:114054

    Article  CAS  Google Scholar 

  15. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry: a review. Microchem J 135:33–38. https://doi.org/10.1016/j.microc.2017.07.015

    Article  CAS  Google Scholar 

  16. Jablonský M, Škulcová A, Šima J (2019) Use of deep eutectic solvents in polymer chemistry: a review. Molecules 24:3978

    Article  Google Scholar 

  17. García G, Aparicio S, Ruh Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644

    Article  Google Scholar 

  18. Svigelj R, Dossi N, Grazioli C, Toniolo R (2021) Deep eutectic solvents (DESs) and their application in biosensor development. Sensors 21:4263

    Article  CAS  Google Scholar 

  19. Ünlü AE, Arıkaya A, Takaç S (2019) Use of deep eutectic solvents as catalyst: a mini-review. Green Process Synth 8:355–372. https://doi.org/10.1515/gps-2019-0003

    Article  CAS  Google Scholar 

  20. Sekharan TR, Chandira RM, Tamilvanan S, Rajesh SC, Venkateswarlu BS (2022) Deep eutectic solvents as an alternate to other harmful solvents. Biointerface Res Appl Chem 12(1):847–860

    CAS  Google Scholar 

  21. Santana-Mayor A, Rodríguez-Ramos R, Herrera-Herrera AV, Socas-Rodríguez B, Rodríguez-Delgado MA (2021) Deep eutectic solvents: the new generation of green solvents in analytical chemistry. Trends Anal Chem 134:116108

    Article  CAS  Google Scholar 

  22. Abbott AP, Barron JC, Ryder KS, Wilson D (2007) Eutectic-based ionic liquids with metal containing anions and a cations. Chem Eur J 13:6495–6501

    Article  CAS  Google Scholar 

  23. Abranches DO, Martins MAR, Silva LP, Schaeffer N, Pinho SP, Coutinho JAP (2019) Phenolic hydrogen bond donors in the formation of non-ionic deep eutectic solvents: the quest for type V DES. Chem Commun 55:1053–1056

    Article  Google Scholar 

  24. El Achkar, T, Moufad T, Ruellan S, Landy D, Greige-Gerges H, Fourmentin S, (2020) Cyclodextrins: from solute to solvent. Chem Commun 56:3385–3388

    Article  CAS  Google Scholar 

  25. El Achkar T, Moura L, Moufawad T, Ruellan S, Panda S, Longuemart S, Legrand F-X, Costa Gomes M, Landy D, Greige-Gerges H, Fourmentin S (2020) New generation of supramolecular mixtures: characterization and solubilization studies. Int J Pharm 584:119443

    Article  Google Scholar 

  26. Ma Y, Wang Q, Zhu T (2019) Comparison of hydrophilic and hydrophobic deep eutectic solvents for pretreatment determination of sulfonamides from aqueous environments. Anal Methods 11:5901–5909

    Article  CAS  Google Scholar 

  27. Brenna D, Massolo E, Puglisi A, Rossi S, Celentano G, Benaglia M, Cariati V (2016) Towards the development of continous organocatalytic and stereoselective reactions in deep eutectic solvents. Beilstein J Org Chem 12:2620–2626

    Article  CAS  Google Scholar 

  28. Kumar A, Shukla RD, Yadav D, Gupta LP (2015) Friedal-Crafts alkylation ofindolesin deep eutectic solvents. RSC Adv 5:52062–52065

    Article  CAS  Google Scholar 

  29. Adepoju TF (2020) Optimization process of biodiesel production from pig and neem (Azadirachta indica a.Juss) seeds blend oil using alternative catalysts from waste biomass. Ind Crops Prod 149:11234

    Article  Google Scholar 

  30. Hoppe J, Drozd R, Byzia E, Smiglak M (2019) Deep eutectic solvents based on choline cation physicochemical properties and influence on enzymatic reaction with β-galactosidase. Int Biol Macromol 136:296–304

    Article  CAS  Google Scholar 

  31. Dimroth K, Reichardt C, Siepmann T, Bohlmann F (1963) Über Pyridinium-N-phenol-betaine und ihre Verwendung zur Charakterisierung der Polarität von Lösungsmitteln. Justus Liebigs Ann Chem 661(1):1–37 ([German])

    Article  CAS  Google Scholar 

  32. Reichardt C (1965) Empirical parameters of polarity of solvents. Angew Chemie Int Ed 4:29–40

    Article  Google Scholar 

  33. Reichardt C (1994) Solvatochromic dyes as solvent polarity indicators. Chem Rev 94:2319–2358. https://doi.org/10.1021/cr00032a005

    Article  CAS  Google Scholar 

  34. Kamlet MJ, Abboud JL, Taft RW (1976) The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. J Am Chem Soc 98:377–383. https://doi.org/10.1021/ja00418a009

    Article  CAS  Google Scholar 

  35. Taft R, Kamlet MJ (1976) The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. J Am Chem Soc 98:2886–2894

    Article  CAS  Google Scholar 

  36. Kamlet MJ, Abboud JLM, Abraham MH, Taft R (1983) Linear solvation energy relationships. 23. A comprehensive collection of the solvatochromic parameters, π*, α, and β and some methods for simplifying the generalized solvatochromic equation. J Org Chem 48:2877–2887

    Article  CAS  Google Scholar 

  37. Kamlet MJ, Abboud JL, Taft RW (1977) The solvatochromic comparison method. 6. The π* scale of solvent polarities. J Am Chem Soc 99:6027–6038. https://doi.org/10.1021/ja00460a031

    Article  CAS  Google Scholar 

  38. Abbott AP, Harris RC, Ryder KS, D’Agostino C, Gladden LF, Mantle MD (2011) Glycerol eutectics as sustainable solvent systems. Green Chem 13:82–90. https://doi.org/10.1039/c0gc00395f

    Article  CAS  Google Scholar 

  39. Dai Y, van Spronsen J, Witkamp GJ, Verpoorte R, Choi YH (2013) Natural deep eutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. https://doi.org/10.1016/j.aca.2012.12.019

    Article  CAS  Google Scholar 

  40. Pandey A, Rai R, Pal M, Pandey S (2014) How polar are choline chloride-based deep eutectic solvents? Phys Chem Chem Phys 16:1559–1568. https://doi.org/10.1039/c3cp53456a

    Article  CAS  Google Scholar 

  41. Vandenelzen L, Hopkins TA (2019) Monosaccharide-based deep eutectic solvents for develo** circularly polarized luminescent materials. ACS Sustain Chem Eng 7:16690–16697. https://doi.org/10.1021/acssuschemeng.9b04100

    Article  CAS  Google Scholar 

  42. Earle Waghorne W (2020) A study of Kamlet-Taft β and π* scales of solvent basicity and polarity/polarizability using computationally derived molecular properties. J Solution Chem 49:466–485

    Article  Google Scholar 

  43. Dwamena AK, Raynie DE (2020) Solvatochromic parameters of deep eutectic solvents: effect of different carboxylic acids as hydrogen bond donor. J Chem Eng Data 65:640–646. https://doi.org/10.1021/acs.jced.9b00872

    Article  CAS  Google Scholar 

  44. Deye JF, Berger TA, Anderson AG (1990) Nile red as a solvatochromic dye for measuring solvent strength in normal liquids and mixtures of normal liquids with supercritical and near critical fluids. Anal Chem 62:615–622. https://doi.org/10.1021/ac00205a015

    Article  CAS  Google Scholar 

  45. Pandey A, Pandey S (2014) Solvatochromic probe behavior within choline chloride-based deep eutectic solvents: effect of temperature and water. J Phys Chem B 118:14652–14661. https://doi.org/10.1021/jp510420h

    Article  CAS  Google Scholar 

  46. Kumar AK, Parikh BS, Pravakar M (2016) Natural deep eutectic solvent mediated pretreatment of rice straw: Bioanalytical characterization of lignin extract and enzymatic hydrolysis of pretreated biomass residue. Environ Sci Pollut Res Int 23:9265–9275

    Article  CAS  Google Scholar 

  47. El Achkar T, Fourmentin S, Greige-Gerges H (2019) Deep eutectic solvents: an overview on their interactions with water and biochemical compounds. J Mol Liq 288:111028

    Article  Google Scholar 

  48. Yiin CL, Quitain AT, Yusup S, Sasaki M, Uemura Y, Kida T (2016) Characterization of natural low transition temperature mixtures (LTTMs): green solvents for biomass delignification. Bioresour Technol 199:258–264

    Article  CAS  Google Scholar 

  49. Gutierrez MC, Ferrer ML, Mateo CR, del Monte F (2009) Freeze-drying of aqueous solutions of deep eutectic solvents: a suitable approach to deep eutectic suspensions of self assembled structures. Langmuir 25:5509–5515

    Article  CAS  Google Scholar 

  50. Wang J, Bao A, Meng X, Guo H, Zhang Y, Zhao Y, Kong W, Liang J, Yao J, Zhang J (2018) An efficient approach to prepare sulfated polysaccharide and evaluation of anti-tumor activities in vitro. Carbohydr Polym 184:366–375. https://doi.org/10.1016/j.carbpol.2017.12.065

    Article  CAS  Google Scholar 

  51. Gomez FJV, Espino M, Fernández MA, Silva MF (2018) A greener approach to prepare natural deep eutectic solvents. Chem Select 3:6122–6125

    CAS  Google Scholar 

  52. Bajkacz S, Adamek J (2018) Development of a method based on natural deep eutectic solvents for extraction of flavonoids from food samples. Food Anal Methods 11:1330–1344

    Article  Google Scholar 

  53. Wang X, Wu Y, Li J, Wang A, Li G, Ren X, Yin W (2020) Ultrasound-assisted deep eutectic solvent extraction of echinacoside and oleuropein from Syringa pubescens. Turcz Ind Crops Prod 151:112442

    Article  CAS  Google Scholar 

  54. Hsieh YH, Li Y, Pan Z, Chen Z, Lu J, Yuan J, Zhu Z, Zhang J (2020) Ultrasonication assisted synthesis of alcohol-based deep eutectic solvents for extraction of active compounds from ginger. Ultrason Sonochem 63:104915

    Article  CAS  Google Scholar 

  55. Santana APR, Mora-Vargas JA, Guimarães TGS, Amaral CDB, Oliveira A, Gonzalez MH (2019) Sustainable synthesis of natural deep eutectic solvents (NADES) by different methods. J Mol Liq 293:17–20

    Article  Google Scholar 

  56. Liu X, Ahlgren S, Korthout HAAJ, Salomé-Abarca LF, Bayona ML, Verpoorte R, Hae Choi Y (2018) Broad range chemical profiling of natural deep eutectic solvent extracts using a high performance thin layer chromatography-based method. J Chromatogr A 1532:198–207. https://doi.org/10.1016/j.chroma.2017.12.009

    Article  CAS  Google Scholar 

  57. Momotko M, Łuczak J, Przyjazny A, Boczkaj G (2021) First deep eutectic solvent-based (DES) stationary phase for gas chromatography and future perspectives for DES application in separation techniques. J Chromatogr A 1635:461701

    Article  CAS  Google Scholar 

  58. McReynolds WO (1970) Characterization of some liquid phases. J Chromatogr Sci 8:685–691

    Article  CAS  Google Scholar 

  59. Rohrschneider L (1966) A method of characterization of the liquids used for separation in gas chromatography. J Chromatogr 22(1):6–22

    Article  CAS  Google Scholar 

  60. Rohrschneider L (1966) A method for characterization of stationary liquids in gas chromatography II: calculation of retention ratios. J Chromatogr 39(4):383–397

    Google Scholar 

  61. Rajkó R, Körtvélyesi T, Sebők-Nagy K, Görgényi M (2005) Theoretical characterization of McReynolds’ constants. Anal Chim Acta 554:163–171

    Article  Google Scholar 

  62. Jiang ZM, Liu WJ, Li Y, Liu J, Wang HY, Li P, Liu EH (2019) Eco-friendly deep eutectic solvents contribute to improving the separation of isoquinoline alkaloids in supercritical fluid chromatography. ACS Sustain Chem Eng 8(36):13777–13783

    Article  Google Scholar 

  63. Jiang ZM, Wang LJ, Liu WJ, Wang HY, **ao PT, Zhou P, Bi ZM, Liu EH (2019) Development and validation of a supercritical fluid chromatography method for fast analysis of six flavonoids in Citri Reticulatae Pericarpium. J Chromatogr B 1133:121845

    Article  CAS  Google Scholar 

  64. Samimi R, Xu WZ, Alsharari Q, Charpentier PA (2014) Supercritical fluid chromatography of North American ginseng extract. J Supercrit Fluids 86:115–123

    Article  CAS  Google Scholar 

  65. Zhu S, Li HP, Zhu WS, Wei J, Wang C, Wu PW, Zhang Q, Li HM (2016) Vibrational analysis and formation mechanism of typical deep eutectic solvents: an experimental and theoretical study. J Mol Graphics Modell 68:158–175

    Article  CAS  Google Scholar 

  66. Jiang ZM, Wang LJ, Gao Z, Zhuang B, Yin Q, Liu EH (2019) Green and efficient extraction of different types of bioactive alkaloids using deep eutectic solvents. Microchem J 145:345–353

    Article  CAS  Google Scholar 

  67. Murauer A, Ganzera M (2018) Quantitative determination of major alkaloids in Cinchona bark by supercritical fluid chromatography. J Chromatogr A 1554:117–122

    Article  CAS  Google Scholar 

  68. Raj D (2020) Thin-layer chromatography with eutectic mobile phases-preliminary results. J Chromatogr A 1621:461044

    Article  CAS  Google Scholar 

  69. Raj D (2022) Eutectic thin-layer chromatography as a new possibility for quantification of plant extracts-a case study. Molecules 27(9):461044

    Article  Google Scholar 

  70. Li G, Zhu T, Lei Y (2015) Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid. Korean J Chem Eng 32:2103–2108

    Article  CAS  Google Scholar 

  71. Gao F, Liu L, Tang W, Row KH, Zhu T (2018) Optimization of the chromatographic behaviors of quercetin using choline chloride-based deep eutectic solvents as HPLC mobile-phase additives. Sep Sci Technol 53:397–403

    Article  CAS  Google Scholar 

  72. Tan T, Zhang M, Wan Y, Qiu H (2016) Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 149:85–90

    Article  CAS  Google Scholar 

  73. Sutton AT, Fraige K, Leme GM, Bolzani VDS, Hilder EF, Cavalheiro AJ, Arrua RD, Funari CS (2018) Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography-searching for alternatives to organic solvents. Anal Bioanal Chem 410:3705–3713

    Article  CAS  Google Scholar 

  74. Ramezani AM, Absalan G (2020) Employment of a natural deep eutectic solvent as a sustainable mobile phase additive for improving the isolation of four crucial cardiovascular drugs by micellar liquid chromatography. J Pharm Biomed Anal 186:113259

    Article  CAS  Google Scholar 

  75. Ramezani AM, Ahmadi R, Absalan G (2020) Designing a sustainable mobile phase composition for melamine monitoring in milk samples based on micellar liquid chromatography and natural deep eutectic solvent. J Chromatogr A 1610:450563. https://doi.org/10.1016/j.chroma.2019.460563

    Article  CAS  Google Scholar 

  76. Roehre S, Bezold F, Garcia EM, Minceva M (2016) Deep eutectic solvents in countercurrent and centrifugal partition chromatography. J Chromatogr A 1434:102–110

    Article  Google Scholar 

  77. Bezold F, Weinberger ME, Minceva M (2017) Computational solvent system screening for the separation of tocopherols with centrifugal partition chromatography using deep eutectic solvent-based biphasic systems. J Chromatogr A 1491:135–138

    Article  Google Scholar 

  78. Bezold F, Minceva MA (2019) Water-free solvent solvent system containing an L-menthol based deep eutectic solvent for centrifugal-partion chromatography applications. J Chromatogr A 1587:166–171

    Article  CAS  Google Scholar 

  79. Friesen JB, Pauli GF (2005) G.U.E.S.S.-A generally useful estimate of solvent systems for CCC. J Liq Chromatogr Relat Technol 28:2777–2806

    Article  CAS  Google Scholar 

  80. Berthod A (2002) Countercurrent chromatography: the Support-Free Liquid Stationary Phase. Elsevier Science & Technology, Amsterdam

    Google Scholar 

  81. Foucault AP (2019) Centrifugal partition chromatography: Chromatographic Series. M. Dekker, New York

    Google Scholar 

  82. Oka F, Oka H, Ito Y (1991) Systematic search for suitable two-phase solvent systems for high-speed counter-current chromatography. J Chromatogr A 538:99–108

    Article  CAS  Google Scholar 

  83. Gu T, Zhang M, Chen J, Qiu H (2015) A novel green approach for the chemical modification of silica particles based on deep eutectic solvents. Chem Commun 51:9825–9828

    Article  CAS  Google Scholar 

  84. Zhang H, Qiao X, Cai T, Chen J, Li Z, Qiu H (2017) Preparation and characterization of carbon dot-decorated silica stationary phase in deep eutectic solvents for hydrophilic interaction chromatography. Anal Bioanal Chem 409:2401–2410

    Article  CAS  Google Scholar 

  85. Yang B, Cai T, Li T, Guan M, Qiu H (2019) Surface radical chain-transfer reaction in deep eutectic solvents for preparation of silica-grafted stationary phases in hydrophilic interaction chromatography. Talanta 175:256–263

    Article  Google Scholar 

  86. Hu Y, Cai T, Zhang H, Chen J, Li Z, Qiu H (2019) Poly(itaconic acid)-grafted silica stationary phase prepared in deep eutectic solvents and its unique performance in hydrophilic interaction chromatography. Talanta 191:265–271

    Article  CAS  Google Scholar 

  87. Cai T, Zhang H, Chen J, Li Z, Qiu H (2019) Polyethyleneimine-functionalized carbon dots and their precursor co-immobilized on silica for hydrophilic interaction chromatography. J Chromatogr A 1597:142–148

    Article  CAS  Google Scholar 

  88. Hu Y, Cai T, Zhang H, Chen J, Li Z, Zhao L, Li Z, Qiu H (2020) Two copolymergrafted silica stationary phases prepared by surface thiol-ene click reaction in deep eutectic solvents for hydrophilic interaction chromatography. J Chromatogr A 1609:460446

    Article  CAS  Google Scholar 

Download references

Funding

There is no source of founding.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ullah.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ahmer, M.F., Ullah, Q. Development and applications of deep eutectic solvents in different chromatographic techniques. JPC-J Planar Chromat 35, 549–570 (2022). https://doi.org/10.1007/s00764-022-00216-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-022-00216-x

Keywords

Navigation