Log in

Applications of green solvents in thin-layer chromatography (TLC)—an overview

  • Review
  • Published:
JPC – Journal of Planar Chromatography – Modern TLC Aims and scope Submit manuscript

Abstract

Volatile organic solvents being generally hazardous to human beings, impact environment and hence are being replaced by environmentally eco-friendly solvents in analytical chemistry. Use of green solvents in different technologies has gained popularity in order to make environment free from pollution. Green solvents have found applications in chemical synthesis and analysis. However, in this review, we have described the work done during the period 2005‒2019 on the use of green solvents like ionic liquids, surfactants, deep eutectic solvents (DES), bio-based solvents in thin-layer chromatography (TLC). To date, only one paper has been reported on the use of DES in TLC.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
EUR 32.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or Ebook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price includes VAT (Germany)

Instant access to the full article PDF.

Fig. 1
Fig. 2

(Source: ISI Web of Knowledge) [58]

Fig. 3

(Source: ISI Web of Knowledge) [58]

Fig. 4

(Source: ISI Web of Knowledge) [58]

Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Anastas PT, Warner JC (1998) Green chemistry: theory and practice. Oxford University Press, New York, NY

    Google Scholar 

  2. Badami BV (2008) Concept of green chemistry. Resonance 13:1041–1048. https://doi.org/10.1007/s12045-008-0124-8

    Article  CAS  Google Scholar 

  3. Nameroff TJ, Garant RJ, Albert MB (2004) Adoption of green chemistry: an analysis based on US patents. Res Policy 33:959–974

    Article  Google Scholar 

  4. Kletz TA (1978) What you don’t have, can’t leak. Chem Ind 9124:287–292

    Google Scholar 

  5. Trost BM (1991) The atom economy—a search for synthetic efficiency. Science 254:1471–1477. https://doi.org/10.1126/science.1962206

    Article  CAS  PubMed  Google Scholar 

  6. Capello C, Fischer U, Hungerbühler K (2007) What is a green solvent? A comprehensive framework for the environmental assessment of solvents. Green Chem 9:927–934. https://doi.org/10.1039/B617536H

    Article  CAS  Google Scholar 

  7. Henderson RK, Jiménez-González C, Constable DJC, Alston SR, Inglis GGA, Fisher G, Sherwood J, Binks SP, Curzons AD (2011) Expanding GSK’s solvent selection guide—embedding sustainability into solvent selection starting at medicinal chemistry. Green Chem 13:854–862. https://doi.org/10.1039/C0GC00918K

    Article  CAS  Google Scholar 

  8. Pena-Pereira F, Kloskowski A, Namieśnik J (2015) Perspectives on the replacement of harmful organic solvents in analytical methodologies: a framework toward the implementation of a generation of eco-friendly alternatives. Green Chem 17:3687–3705

    Article  CAS  Google Scholar 

  9. Byrne FP, ** S, Paggiola G, Petchey THM, Clark JH, Farmer TJ, Hunt AJ, McElroy CR, Sherwood J (2016) Tools and techniques for solvent selection: green solvent selection guides. Sustain Chem Process 4:7. https://doi.org/10.1186/s40508-016-0051-z

    Article  CAS  Google Scholar 

  10. Gaber Y, Törnvall U, Kumar MA, Ali Amin M, Hatti-Kaul R (2011) HPLC–EAT (Environmental Assessment Tool): a tool for profiling safety, health and environmental impacts of liquid chromatography methods. Green Chem 13:2021–2025. https://doi.org/10.1039/C0GC00667J

    Article  CAS  Google Scholar 

  11. Tobiszewski M, Namieśnik J (2017) Greener organic solvents in analytical chemistry. Curr Opin Green Sustain Chem 5:1–4

    Article  Google Scholar 

  12. Scott MJ, Jones MN (2000) The biodegradation of surfactants in the environment. Biochim Biophys Acta BBA Biomembr 1508:235–251. https://doi.org/10.1016/S0304-4157(00)00013-7

    Article  CAS  Google Scholar 

  13. Margesin R, Schinner F (1998) Biodegradation of the anionic surfactant sodium dodecyl sulfate at low temperatures. Int Biodeterior Biodegrad 41:139–143. https://doi.org/10.1016/S0964-8305(97)00084-X

    Article  CAS  Google Scholar 

  14. Thomas O, White G (1989) Metabolic pathway for the biodegradation of sodium dodecyl sulfate by Pseudomonas sp. C12B. Biotechnol Appl Biochem 11:318–327. https://doi.org/10.1111/j.1470-8744.1989.tb00064.x

    Article  CAS  PubMed  Google Scholar 

  15. Ambily PS, Jisha MS (2014) Metabolic profile of sodium dodecyl sulphate (SDS) biodegradation by Pseudomonas aeruginosa (MTCC 10311). J Environ Biol 35:827–831

    CAS  PubMed  Google Scholar 

  16. Khaledi MG (1997) Micelles as separation media in high-performance liquid chromatography and high-performance capillary electrophoresis: overview and perspective. J Chromatogr A 780:3–40. https://doi.org/10.1016/S0021-9673(97)00610-9

    Article  CAS  Google Scholar 

  17. ICH Harmonised Tripartite Guideline (2005) Impurities: Guideline for residual solvents Q3C (R5), Current Steps. In: International conference on harmonisation, Geneva, vol 4, p 509

  18. Farulla E, Turi-laco-belliC LM, Salvetti F (1963) Handbook of pesticides: methods of pesticides residues analysis. J Chromatogr 12:255–261

    Article  CAS  PubMed  Google Scholar 

  19. Sumina EG, Shtykov SN, Tyurina NV (2003) Surfactants in thin-layer chromatography. J Anal Chem 58:720–730. https://doi.org/10.1023/A:1025027409149

    Article  CAS  Google Scholar 

  20. Bhawani SA, AlbishriHM KZA, Ibrahim MNM, Mohammad A (2013) Surfactant modified/mediated thin-layer chromatographic systems for the analysis of amino acids. Anal Methods Chem 2013:1–12

    Article  Google Scholar 

  21. Ullah Q, Mohammad A, Mobin R (2016) Surfactants as separation modifiers in chemical analyses by thin-layer chromatography: a review. J Planar Chromatogr 29:88–98. https://doi.org/10.1556/1006.2016.29.2.1

    Article  CAS  Google Scholar 

  22. Mohammad A, Inamuddin SA, El-Desoky GE (2012) Green solvents in thin-layer chromatography. In: Inamuddin (ed) Green Solvents I. Springer, Dordrecht, pp 331–361

    Chapter  Google Scholar 

  23. Abbott AP, Boothby D, Capper G, Davies DL, Rasheed RK (2004) Deep eutectic solvents formed between choline chloride and carboxylic acids: versatile alternatives to ionic liquids. J Am Chem Soc 126:9142–9147. https://doi.org/10.1021/ja048266j

    Article  CAS  PubMed  Google Scholar 

  24. Francisco M, Van Den Bruinhorst A, Kroon MC (2013) Low-transition temperature mixtures (LTTMs): a new generation of designer solvents. Angew Chem Int Ed 52:3074–3085. https://doi.org/10.1002/anie.201207548

    Article  CAS  Google Scholar 

  25. Choi YH, van Spronsen J, Dai YT, Verberne M, Hollmann F, Arends IWCE, Witkamp GJ, Verpoorte R (2011) Are natural deep eutectic solvents the missing link in understanding cellular metabolism and physiology? Plant Physiol 156:1701–1705. https://doi.org/10.1104/pp.111.178426

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Dai Y, van Spronsen J, Witkamp G-J, Verpoorte R, Choi YH (2013) Natural deepeutectic solvents as new potential media for green technology. Anal Chim Acta 766:61–68. https://doi.org/10.1016/j.aca.2012.12.019

    Article  CAS  PubMed  Google Scholar 

  27. Handy S (2015) Deep eutectic solvents in organic synthesis. In: S. Handy (Ed.) Ionic liquids—current state of the art. IntechOpen, London. https://doi.org/10.5772/59254

    Chapter  Google Scholar 

  28. Alonso DA, Baeza A, Chinchilla R, Guillena G, Pastor I, Ramon DJ (2016) Deepeutectic solvents: the organic reaction medium of the century. Eur J Org Chem 2016:612–632. https://doi.org/10.1002/ejoc.201501197

    Article  CAS  Google Scholar 

  29. Liu P, Hao JW, Mo LP, Zhang ZH (2015) Recent advances in the application of deep eutectic solvents as sustainable media as well as catalysts in organic reactions. RSC Adv 5:48675–48704. https://doi.org/10.1039/C5RA05746A

    Article  CAS  Google Scholar 

  30. Khandelwal S, Tailor YK, Kumar M (2016) Deep eutectic solvents (DESs) as eco-friendly and sustainable solvent/catalyst systems in organic transformations. J Mol Liq 215:345–386

    Article  CAS  Google Scholar 

  31. Durand E, Lecomte J, Villeneuve P (2013) Deep eutectic solvents: synthesis, application, and focus on lipase-catalyzed reactions. Eur J Lipid Sci Technol 115:379–385. https://doi.org/10.1002/ejlt.201200416

    Article  CAS  Google Scholar 

  32. Abbott AP, Azam M, Ryder KS, Saleem S (2013) In situ electrochemical digital holographic microscopy; a study of metal electro deposition in deep eutectic solvents. Anal Chem 85:6653–6660. https://doi.org/10.1021/ac400262c

    Article  CAS  PubMed  Google Scholar 

  33. Nkuku CA, LeSuer RJ (2007) Electrochemistry in deep eutectic solvents. J Phys Chem B 111:13271–13277. https://doi.org/10.1021/jp075794j

    Article  CAS  PubMed  Google Scholar 

  34. Jhong HR, Wong DS-H, Wan CC, Wang YY, Wei TC (2009) A novel deep eutectic solvent-based ionic liquid used as electrolyte for dye-sensitized solar cells. Electrochem Commun 11:209–211. https://doi.org/10.1016/j.elecom.2008.11.001

    Article  CAS  Google Scholar 

  35. Abo-Hamad A, Hayyan M, Al-Saadi MA, Hashim MA (2015) Potential applications of deep eutectic solvents in nanotechnology. Chem Eng J 273:551–567. https://doi.org/10.1016/j.cej.2015.03.091

    Article  CAS  Google Scholar 

  36. Wagle DV, Zhao H, Baker GA (2014) Deep eutectic solvents: sustainable media for nanoscale and functional materials. Acc Chem Res 47:2299–2308. https://doi.org/10.1021/ar5000488

    Article  CAS  PubMed  Google Scholar 

  37. Carriazo D, Serrano MC, Gutierrez MC, Ferrer ML, del Monte F (2012) Deep eutectic solvents playing multiple roles in the synthesis of polymers and related materials. Chem Soc Rev 41:4996–5014. https://doi.org/10.1039/C2CS15353J

    Article  CAS  PubMed  Google Scholar 

  38. Shishov A, Bulatov A, Locatelli M, Carradori S, Andruch V (2017) Application of deep eutectic solvents in analytical chemistry. A review. Microchem J 135:33–38

    Article  CAS  Google Scholar 

  39. Li X, Row KH (2016) Development of deep eutectic solvents applied in extraction and separation. J Sep Sci 39:3505–3520. https://doi.org/10.1002/jssc.201600633

    Article  CAS  PubMed  Google Scholar 

  40. García G, Aparicio S, Ullah R, Atilhan M (2015) Deep eutectic solvents: physicochemical properties and gas separation applications. Energy Fuels 29:2616–2644. https://doi.org/10.1021/ef5028873

    Article  CAS  Google Scholar 

  41. Han X, Chen J, Zhang H, Li Z, Qiu H (2018) Application of deep eutectic solvents in sample preparation. Sci Sin Chim 48:1548–1560

    Article  Google Scholar 

  42. Garcia A, Rodriguez-Juan E, Rodriguez-Gutierrez G, Rios JJ, Fernandez Bolanos J (2016) Extraction of phenolic compounds from virgin olive oil by deep eutectic solvents (DESs). Food Chem 197:554–561. https://doi.org/10.1016/j.foodchem.2015.10.131

    Article  CAS  PubMed  Google Scholar 

  43. Bubalo MC, Curko N, Tomasevic M, Kovacevic Ganic KK, Redovnikovic IR (2016) Green extraction of grape skin phenolics by using deep eutectic solvents. Food Chem 200:159–166

    Article  Google Scholar 

  44. Gu T, Zhang M, Tan T, Chen J, Li Z, Zhang Q, Qiu H (2014) Deep eutectic solvents as novel extraction media for phenolic compounds from model oil. Chem Commun (Camb) 50:11749–11752. https://doi.org/10.1039/C4CC04661G

    Article  CAS  Google Scholar 

  45. Ali MC, Liu R, Chen J, Cai T, Zhang H, Li Z, Zhai H, Qiu H (2019) New deep eutectic solvents composed of crown ether, hydroxide and polyethylene glycol for extraction of non-basic N-compounds. Chin Chem Lett 30:871–874. https://doi.org/10.1016/j.cclet.2019.02.025

    Article  CAS  Google Scholar 

  46. Ali MC, Chen J, Zhang H, Li Z, Zhao L, Qiu H (2019) Effective extraction of flavonoids from Lycium barbarum L. fruits by deep eutectic solvents-based ultrasound-assisted extraction. Talanta 203:16–22. https://doi.org/10.1016/j.talanta.2019.05.012

    Article  CAS  PubMed  Google Scholar 

  47. Boulos RA, Eroglu E, Chen X, Scaffidi A, Edwards BR, Toster J, Raston CL (2013) Unravelling the structure and function of human hair. Green Chem 15(5):1268‒1273. https://doi.org/10.1039/C3GC37027E

    Article  CAS  Google Scholar 

  48. Zhang Q, Benoit M, De Oliveira VK, Barrault J, Jerome F (2012) Green and inexpensive choline-derived solvents for cellulose decrystallization. Chem Eur J 18:1043–1104. https://doi.org/10.1002/chem.201103271

    Article  CAS  PubMed  Google Scholar 

  49. Li G, Zhu T, Lei Y (2015) Choline chloride-based deep eutectic solvents as additives for optimizing chromatographic behavior of caffeic acid. Korean J Chem Eng 32:2103–2108. https://doi.org/10.1007/s11814-015-0054-6

    Article  CAS  Google Scholar 

  50. Ramezani AM, Ahmadi R, Absalan G (2019) Designing a sustainable mobile phase composition for melamine monitoring in milk samples based on micellar liquid chromatography and natural deep eutectic solvent. J Chromatogr A 1610:460563. https://doi.org/10.1016/j.chroma.2019.460563

    Article  CAS  PubMed  Google Scholar 

  51. Ramezani AM, Absalan G, Ahmadi R (2018) Green-modified micellar liquid chromatography for isocratic isolation of some cardiovascular drugs with different polarities through experimental design approach. Anal Chim Acta 1010:76–85. https://doi.org/10.1016/j.aca.2017.12.021

    Article  CAS  PubMed  Google Scholar 

  52. Tan T, Zhang M, Wan Y, Qiu H (2016) Utilization of deep eutectic solvents as novel mobile phase additives for improving the separation of bioactive quaternary alkaloids. Talanta 149:85–90. https://doi.org/10.1016/j.talanta.2015.11.041

    Article  CAS  PubMed  Google Scholar 

  53. Cai T, Qiu H (2019) Application of deep eutectic solvents in chromatography: a review. Trends Anal Chem 120:115623

    Article  CAS  Google Scholar 

  54. Gu T, Zhang M, Chen J, Qiu H (2015) A novel green approach for the chemical modification of silica particles based on deep eutectic solvents. Chem Commun (Camb) 51:9825–9828

    Article  CAS  Google Scholar 

  55. Tan T, Qiao X, Wan Y, Qiu H (2015) Deep eutectic solvent: a new kind of mobile phase modifier for hydrophilic interaction liquid chromatography. Chin J Chromatogr 33:934–937

    Article  CAS  Google Scholar 

  56. Sutton AT, Fraige K, Leme GM, da Silva BV, Hilder EF, Cavalheiro AJ, Arrua RD, Funari CS (2018) Natural deep eutectic solvents as the major mobile phase components in high-performance liquid chromatography searching for alternatives to organic solvents. Anal Bioanal Chem 410:3705–3713

    Article  CAS  PubMed  Google Scholar 

  57. Raj D (2020) Thin-layer chromatography with eutectic mobile phases—preliminary results. J Chromatogr A 1621:461044. https://doi.org/10.1016/j.chroma.2020.461044

    Article  CAS  PubMed  Google Scholar 

  58. Paiva A, Craveiro R, Aroso I, MartinsM ReisRL, Duarte ARC (2014) Natural deep eutectic solvents–solvents for the 21st century. ACS Sustain Chem Eng 2(5):1063–1071. https://doi.org/10.1021/sc500096j

    Article  CAS  Google Scholar 

  59. Płotka J, Tobiszewski M, Sulej AM, Kupska M, Górecki T, Namieśnik J (2013) Green chromatography. J Chromatogr A 1307:1–20

    Article  PubMed  Google Scholar 

  60. Welch CJ, Wu N, Biba M, Hartman R, Brkovic T, Gong X, Helmy R, Schafer W, Cuff J, Pirzada Z (2010) Greening analytical chromatography. Trends Anal Chem 229:667–680

    Article  Google Scholar 

  61. Shen Y, Chen B, van Beek TA (2015) Alternative solvents can make preparative liquid chromatography greener. Green Chem 17:4073–4081

    Article  CAS  Google Scholar 

  62. Snyder LR, Kirkland JJ, Dolan JW (2009) Introduction to modern liquid chromatography. Wiley, Hoboken

    Book  Google Scholar 

  63. Ullah Q (2020) Separation and analysis of heavy metal ions by thin-layer chromatography (TLC)—a mini-review (2000–2019). J Planar Chromatogr 33:329–340. https://doi.org/10.1007/s00764-020-00048-7

    Article  CAS  Google Scholar 

  64. Ullah Q, Mohammad A (2020) Vitamins determination by TLC/HPTLC—a mini-review. J Planar Chromatogr 33:429–437. https://doi.org/10.1007/s00764-020-00051-y

    Article  CAS  Google Scholar 

  65. Ullah Q, Fatema N, Mohammad A (2020) Detection reagents used for on-plate identification of organic pesticides in biological samples with preliminary separation by TLC/HPTLC. J Planar Chromatogr 33:533–546. https://doi.org/10.1007/s00764-020-00057-6

    Article  CAS  Google Scholar 

  66. Walden P (1914) Molecular weights and electrical conductivity of several fused salts. Bull Russian Acad Sci 1800:405–422

    Google Scholar 

  67. Wilkes JS, Levisky JA, Wilson RA, Hussey CL (1982) Dialkylimidazolium chloroaluminate melts: a new class of room-temperature ionic liquids for electrochemistry, spectroscopy and synthesis. Inorg Chem 21:1263–1264. https://doi.org/10.1021/ic00133a078

    Article  CAS  Google Scholar 

  68. Wilkes JS, Zaworotko MJ (1992) Air and water stable 1-ethyl-3-methylimidazolium based ionic liquids. J Chem Soc Chem Commun 13:965–967. https://doi.org/10.1039/C39920000965

    Article  Google Scholar 

  69. Keskin S, Kayrak-Talay D, Akman U, et al. (2007) A review of ionic liquids towards supercritical fluid applications. J Super Crit Fluids 43:150–180

    Article  CAS  Google Scholar 

  70. He LJ, Zhang WZ, Zhao L, Liu X, Jiang SX (2003) Effect of 1-alkyl-3-methylimidazolium-based ionic liquids as the eluent on the separation of ephedrines by liquid chromatography. J Chromatogr A 1007:39–45

    Article  CAS  PubMed  Google Scholar 

  71. Poole CF, Lenca N (2015) Green sample-preparation methods using room-temperature ionic liquids for the chromatographic analysis of organic compounds. Trends Anal Chem 71:144–156. https://doi.org/10.1016/j.trac.2014.08.018

    Article  CAS  Google Scholar 

  72. Bubalo MC, Vidović S, Redovniković IR, Jokić S (2015) Green solvents for green technologies. J Chem Technol Biotechnol 90:1631–1639. https://doi.org/10.1002/jctb.4668

    Article  CAS  Google Scholar 

  73. Poole CF (2004) Chromatographic and spectroscopic methods for the determination of solvent properties of room temperature ionic liquids. J Chromatogr A 1037:49–82. https://doi.org/10.1016/j.chroma.2003.10.127

    Article  CAS  PubMed  Google Scholar 

  74. Berthed A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–16. https://doi.org/10.1016/j.chroma.2007.11.109

    Article  CAS  Google Scholar 

  75. Hallen JP, Welton T (2011) Room-temperature ionic liquids: solvents for synthesis and catalysis. Chem Rev 111:3508–3576. https://doi.org/10.1021/cr1003248

    Article  CAS  Google Scholar 

  76. Poole SK, Shetty PH, Poole CF (1989) Chromatographic and spectroscopic studies of the solvent properties of a new series of room-temperature liquid tetraalkylammonium sulfonates. Anal Chim Acta 218:241–264. https://doi.org/10.1016/S0003-2670(00)80302-5

    Article  CAS  Google Scholar 

  77. Furton KG, Poole CF (1987) Thermodynamic characteristics of solute—solvent interactions in liquid organic salt solvents, studied by gas chromatography. J Chromatogr 399:47–67. https://doi.org/10.1016/S0021-9673(00)96110-7

    Article  CAS  Google Scholar 

  78. Waichigo MM, Reichel TL, Danielson ND (2005) Ethylammonium acetate as a mobile phase modifier for reversed phase liquid chromatography. Chromatographia 61:17–23. https://doi.org/10.1365/s10337-004-0460-02005

    Article  CAS  Google Scholar 

  79. Shetty PH, Youngberg PA, Kersten BR, Poole CF (1987) Solvent properties of liquid organic salts used as mobile phases in microcolumn reversed-phase liquid chromatography. J Chromatogr 411:61–79. https://doi.org/10.1016/S0021-9673(00)93960-8

    Article  CAS  Google Scholar 

  80. Shetty P, Poole SK, Poole CF (1990) Applications of ethylammonium and propylammonium nitrate solvents in liquid–liquid extraction and chromatography. Anal Chim Acta 236:51–61. https://doi.org/10.1016/S0003-2670(00)83299-7

    Article  CAS  Google Scholar 

  81. Poole CF, Kersten BR, Ho SSJ, Coddens ME, Furton KG (1986) Organic salts, liquid at room temperature, as mobile phases in liquid chromatography. J Chromatogr 352:407–425. https://doi.org/10.1016/S0021-9673(01)83397-5

    Article  CAS  Google Scholar 

  82. Polyakova Y, Koo YM, Row KH (2007) Application of ionic liquids of some bioactive molecules in RP-HPLC. Rev Anal Chem 26:77–98

    Article  CAS  Google Scholar 

  83. Marszałł MP, Kaliszan R (2007) Application of ionic liquids in liquid chromatography. Crit Rev Anal Chem 37:127–140

    Article  Google Scholar 

  84. García-Alvarez-Coque MC, Ruiz-Angel MJ, Berthod A, Carda-Broch S (2015) On the use of ionic liquids as mobile phase additives in high-performance liquid chromatography. A review. Anal Chim Acta 883:1–21

    Article  PubMed  Google Scholar 

  85. Karlsova LA, Bessanova EA, Kolobova J (2016) Ionic liquids as modifiers of chromatographic and electrophoretic systems. Anal Chem 71:141–152

    Article  Google Scholar 

  86. Petruczynik A, Wróblewski K, Waksmundzka-Hajnos M (2018) Application of mobile phases containing ionic liquid for the analysis of selected psychotropic drugs by HPLC-DAD and HPLC-MS. Acta Chromatogr 31:255–261

    Article  Google Scholar 

  87. Kaliszan R, Marszałł MP, Markuszewski MJ, Baczek T, Pernak J (2004) Suppression of deleterious effects of free silanols in liquid chromatography by imidazolium tetrafluoroborate ionic liquids. J Chromatogr A 1030:263–271

    Article  CAS  PubMed  Google Scholar 

  88. Shu XHJ, Liu F, Zhou X, Jiang SX, Liu X, Zhao L (2004) Surface confined ionic liquid―A new stationary phase for the separation of ephedrines in high-performance liquid chromatography. Chin Chem Lett 15:1060–1062

    Google Scholar 

  89. Sun M, Feng J, Wang X, Duan H, Li L, Luo C (2014) Dicationic imidazolium ionic liquid modified silica as a novel reversed-phase/anion-exchange mixed-mode stationary phase for high-performance liquid chromatography. J Sep Sci 37:2153–2159

    Article  CAS  PubMed  Google Scholar 

  90. Koel M (2005) Ionic liquids in chemical analysis. Crit Rev Anal Chem 35:177–192. https://doi.org/10.1080/10408340500304016

    Article  CAS  Google Scholar 

  91. Liu JF, Jiang GB, Jönsson JÅ (2005) Application of ionic liquids in analytical chemistry. Trends Anal Chem 24:20–27. https://doi.org/10.1016/j.trac.2004.09.005

    Article  CAS  Google Scholar 

  92. Pandey S (2006) Analytical applications of room-temperature ionic liquids: a review of recent efforts. Anal Chim Acta 556:38–45

    Article  CAS  PubMed  Google Scholar 

  93. Buszewski B, Studzinska S (2008) A review of ionic liquids in chromatographic and electromigration techniques. Chromatographia 68:1–10

    Article  CAS  Google Scholar 

  94. Shamsi SA, Danielson ND (2007) Utility of ionic liquids in analytical separations. J Sep Sci 30:1729–1750. https://doi.org/10.1002/jssc.200700136

    Article  CAS  PubMed  Google Scholar 

  95. Berthod A, Ruiz-Angel MJ, Carda-Broch S (2008) Ionic liquids in separation techniques. J Chromatogr A 1184:6–18. https://doi.org/10.1016/j.chroma.2007.11.109

    Article  CAS  PubMed  Google Scholar 

  96. Han D, Row KH (2010) Recent applications of ionic liquids in separation technology. Molecules 15:2405–2426. https://doi.org/10.3390/molecules15042405

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Huang Y, Yao S, Song H (2013) Application of ionic liquids in liquid chromatography and electrodriven separation. J Chromatogr Sci 51:739–752. https://doi.org/10.1093/chromsci/bmt076

    Article  CAS  PubMed  Google Scholar 

  98. Irge DD (2016) Ionic liquids: a review on greener chemistry applications, quality ionic liquid synthesis and economical viability in a chemical processes. Am J Phys Chem 5:74–79

    Article  CAS  Google Scholar 

  99. Lenca N, Poole CF (2017) Liquid chromatography with room temperature ionic liquids. J Planar Chromatogr 30(2):97–105. https://doi.org/10.1556/1006.2017.30.2.2

    Article  CAS  Google Scholar 

  100. Brown L, Earle MJ, Gılea MA, Plechkova NV, Seddon KR (2017) Ionic liquid–liquid chromatography: a new general purpose separation methodology. Top Curr Chem (Cham) 375(74):1–41. https://doi.org/10.1007/s41061-017-0159-y

    Article  CAS  Google Scholar 

  101. Buszewska-Forajta M, Markuszewski MJ, Kaliszan R (2018) Free silanols and ionic liquids as their suppressors in liquid chromatography. J Chromatogr A 1559:17‒43. https://doi.org/10.1016/j.chroma.2018.04.002

    Article  CAS  PubMed  Google Scholar 

  102. Mallakpour S, Dinari M (2012) Ionic liquids as green solvents: progress and prospects. In: Mohammad A, Inamuddin D (eds) Green solvents II: properties and applications of ionic liquids. Springer, Dordrecht, pp 1–32. https://doi.org/10.1007/978-94-007-2891-2_1-32

    Chapter  Google Scholar 

  103. Mohammad A, Hena S (2005) Simultaneous separation of nitroaniline isomers with a water-in-oil micro-emulsion. Acta Chromatogr 15:238–246

    CAS  Google Scholar 

  104. Mohammad A, Hena S (2005) Use of micellar anionic surfactant solution with added carbohydrates as mobile phase in thin-layer chromatography of heavy metal cations. Separation of mixtures of aluminum(III), manganese(II) and chromium(VI). Acta Chromatogr 15:192–205

    CAS  Google Scholar 

  105. Singh DK, Sahu A (2005) Thin layer chromatography of opium alkaloids with hybrid CTAB–alcohol–water mobile phase and estimation of papaverine. HCl and codein sulphate in pharmaceutical formulations. J Chin Chem Soc 52:247–251

    Article  CAS  Google Scholar 

  106. Mohammad A, Hena S, Bhawani SA (2006) TLC separation of L-tryptophan using micro-emulsion mobile phase and its spectrophotometric determination. Indian J Chem 45A:1663–2166

    CAS  Google Scholar 

  107. Mohammad A, Laeeq S (2007) Mixed surfactants enable separation of lysine from other essential amino acids in TLC on silica gel. J Planar Chromatogr 20:65–69

    Article  Google Scholar 

  108. Mohammad A, Zehra A (2007) Surfactants modified silica phase for sorption studies of essential amino acids by thin layer chromatography. Colloids Surf A 301:404–411

    Article  CAS  Google Scholar 

  109. Mohammad A, Agrawal V, Shahab H (2007) Cetylpyridinium chloride micelle-mediated mutual separation of zinc, cadmium, and mercury ions by thin-layer chromatography. Acta Chromatogr 19:185–196

    CAS  Google Scholar 

  110. Mohammad A, Gupta R (2008) Mobility behaviour of amino acids on silica static phase: micelles activated separations. Colloids Surf B 65:166–171

    Article  CAS  Google Scholar 

  111. Mohammad A, Sharma S, Bhawani SA (2009) Chromatographic separation studies of cephalosporins on CTAB modified silica layers with different buffer solvent systems. Int J Chem Tech Res 1:591–595

    CAS  Google Scholar 

  112. Mohammad A, Zehra A (2009) Simultaneous separation and identification of cyanocobalamin, thiamine, and ascorbic acid on polyoxyethylene sorbitan monooleate-impregnated silica layers with water as mobile phase. J Planar Chromatogr 22:429–433

    Article  CAS  Google Scholar 

  113. Mohammad A, Gupta R, Bhawani SA (2009) Micelles activated planar chromatographic separation of hydrophilic vitamins. Tenside Surf Deterg 46:267–270

    Article  CAS  Google Scholar 

  114. Sharma S, Bhawani SA (2009) Identification and quantification of lisinopril from pure, formulated and urine samples by micellar thin layer chromatography. Int J Pharm Technol Res 2:264–272

    Google Scholar 

  115. Mohammad A, Sharma S, Bhawani SA (2010) Identification of ketoprofen in drug formulation and spiked urine samples by micellar thin layer chromatography and its quantitative estimation by high performance liquid chromatography. Int J Pharm Tech Res 2:89–96

    CAS  Google Scholar 

  116. Mohammad A, Zehra A (2010) Anionic-nonionic surfactants coupled micellar thin-layer chromatography: synergistic effect on simultaneous separation of hydrophilic vitamins. J Chromatogr Sci 48:145–149

    Article  CAS  PubMed  Google Scholar 

  117. Mohammad A, Haq N (2010) Synergistic effect of cationic-nonionic surfactants on simultaneous separation of phenylalanine and tyrosine. Tenside Surf Deterg 47:248–253

    Article  CAS  Google Scholar 

  118. Mohammad A, Haq N (2010) TLC separation of amino acids with a green mobile phase. J Planar Chromatogr 23:260–264

    Article  CAS  Google Scholar 

  119. Dhote SS, Deshmukh L, Paliwal LJ (2012) Chromatographic behaviour of metal cations on addition of various additives in aqueous BAC mobile phase. Pharm Chem 3:474–482

    Google Scholar 

  120. Dhote SS, Deshmukh L, Paliwal LJ (2012) Chromatographic separation of heavy metals by used of aminoplast as a stationary phase. Int J Chem App 4:53–61

    Google Scholar 

  121. Nagpurkar VS, Deshmukh L, Paliwal LJ (2012) Separation and identification study of different metal ions by thin layer chromatography using mixture of urea formaldehyde polymer and silica gel-Gasthin layer and surfactants, organic solvents as mobile phase. Chem Sin 3:824–829

    CAS  Google Scholar 

  122. Dhote SS, Deshmukh L, Paliwal LJ (2012) Separation of various metal ions by using cationic surfactant as a mobile phase by thin layer chromatography. Int J Chem Anal Sci 3:1280–1283

    Google Scholar 

  123. Bhawani S, Hena S, Mohamad I, Sulaiman O, Hashim R, San K (2012) Identification and separation of lead(II), nickel(II) and cobalt(II) on silica gel 60 F254 high-performance thin-layer chromatographic plates with mixed aqueous sodium dodecyl sulphate-oxalic acid solvent system. J Planar Chromatogr 25:355–357

    Article  CAS  Google Scholar 

  124. Dhote SS, PaliwalLJ DL (2012) Rapid chromatographic separation of heavy metal cations on bismuth silicate layer. Chem Sin 3:225–230

    CAS  Google Scholar 

  125. Dhote SS, Deshmukh L, Paliwal LJ (2013) Use of nonionic Tween-80 surfactant mobile phase in thin layer chromatography of heavy metal cations. Am J Mater Sci Technol 2:10–23

    Google Scholar 

  126. Dhote SS, Deshmukh L, Paliwal LJ (2013) Micellar chromatographic method for the separation of heavy metal ions and spectrophotometric estimation of UO22+ on bismuth silicate layer. Int J Chem and Anal Sci 4:85–90

    Article  CAS  Google Scholar 

  127. Nagpurkar VS, Deshmukh L, Paliwal LJ (2014) Thin layer chromatography separation study of certain metal cations with mixture of urea formaldehyde & cellulose as stationary phase system. Arch Appl Sci Res 6:93–99

    CAS  Google Scholar 

  128. Dhote SS, Deshmukh L, Paliwal LJ (2014) Micellar thin layer chromatography of various heavy metal cations using non-ionic surfactant Inter. J Chem Technol 6:366–374

    CAS  Google Scholar 

  129. Jumde MH, Gurnule WB (2015) Separation and identification of heavy metal ions by thin layer chromatography on silica gel-G. Pharm Chem 7:409–414

    CAS  Google Scholar 

  130. Kulikov AY, Renkevich AY, Boichenko AP (2015) Development and validation of assay and stability-indicating of gamma-aminobutyric acid in tablets by micellar thin-layer chromatography. Methods Objects Chem Anal 10:73–79

    Article  Google Scholar 

  131. Dhote SS (2017) A simple micellar thin layer chromatographic method for the separation of various heavy metal ions on bismuth silicate layer. Int J Agri Sci Res 7:517–522

    Google Scholar 

  132. Polak B, Traczuk A, Misztal S (2019) Separation of 9-fluorenylmethyloxycarbonyl amino acid derivatives in micellar systems of high-performance thin-layer chromatography and pressurized planar electrochromatography. Sci Rep 9(1):17103. https://doi.org/10.1038/s41598-019-53468-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  133. Živković-Radovanović V, Vucković G (2005) Poly(ethylene glycol) as impregnator for silica gel in salting-out thin-layer chromatography of some Co(III) complexes. Chromatographia 62(1):91–97. https://doi.org/10.1365/s10337-005-0580-1

    Article  CAS  Google Scholar 

  134. Mohammad A, Haq N, Siddiq A (2010) Resolution of multi-component mixture of amino acids using environmentally benign eluents: a green chromatographic approach. J Sep Sci 33:3619–3626

    Article  CAS  PubMed  Google Scholar 

  135. Mohammad A, Gupta R, Haq N, Naushad M, El-Deosky GE (2011) Ethylene glycol as new mobile phase for resolution of two-component mixture of cationic surfactants on alumina surface. J Dispers Sci Technol 32:1179–1184

    Article  CAS  Google Scholar 

  136. Mohammad A, Siddiq A, El-Deosky GE (2013) Environmentally preferable solvents promoted resolution of multi-component mixtures of amino acid: an approach to perform green chromatography. J Anal Sci Technol 4:1–6

    Article  Google Scholar 

  137. Mohammad A, Siddiq A, Moheman A, El-Deosky GE (2013) Green analytical method for identification of amino acids, vitamins and sugars with preliminary separations on HPTLC plates. Ind J Chem Technol 20:180–184

    CAS  Google Scholar 

  138. Cretu G, Morlock G, Miron AR, Nechifor AC (2013) A high-performance thin-layer chromatographic method for chlorogenic acid and hyperoside determination from berry extracts. Romanian Biotechnol Lett 18:8657–8665

    Google Scholar 

  139. Mohammad A, Siddiq A, Moheman A, El-Deosky GE (2014) On-plate identification of amino acids with preliminary separation using green solvents. J Liq Chromatogr Relat Technol 37:829–840

    Article  CAS  Google Scholar 

  140. Moussa BA, El-Kady EF, Mohamed MF, Youssef NF (2017) Greener thin-layer chromatographic solvents for the determination of pantoprazole sodium sesquihydrate, metronidazole and clarithromycin in pharmaceutical formulations used as triple therapy in Helicobacter infection. J Planar Chromatogr 30:481–487

    Article  CAS  Google Scholar 

  141. Abu Al-Alamein AM, Abd El-Rahman MK, Abdel-Moety EM, Fawaz EM (2019) Green HPTLC–densitometric approach for simultaneous determination and impurity-profiling of ebastine and phenylephrine hydrochloride. Microchem J 147:1097–1102. https://doi.org/10.1016/j.microc.2019.04.043

    Article  CAS  Google Scholar 

  142. Marszałł MP, Bączek T, Kaliszan R (2005) Reduction of silanophilic interactions in liquid chromatography with the use of ionic liquids. Anal Chim Acta 547:172–178

    Article  Google Scholar 

  143. Beczek T, Marszałł MP, Kaliszan R, Walijewski L, Makowiecka W, Sparzak B, Grzonka Z, Wisniewska K, Juszczyk P (2005) Behavior of peptides and computer assisted optimization of peptides separations in a normal-phase thin layer chromatography system with and without the addition of ionic liquid in the eluent. Biomed Chromatogr 19:1–8

    Article  Google Scholar 

  144. Bączek T, Sparzak B (2006) Ionic liquids as novel solvent additives to separate peptides. Z Naturforsch C 61:827–832

    Article  PubMed  Google Scholar 

  145. Marszałł MP, Sroka WD, Balinowska A, Mieszkowski D, Koba M, Kaliszan R (2013) Ionic liquids as mobile phase additives for feasible assay of naphazoline in pharmaceutical formulation by HPTLC–UV–densitometric method. J Chromatogr Sci 51:560–565

    Article  PubMed  Google Scholar 

  146. Mieszkowski D, Siodmiak T, Marszałł MP (2014) 1-Alkyl-3-methylimidazolium fluoroborate as an alternative mobile phase additive for determination of haloperidol in pharmaceutical formulation by HPTLC–UV–densitometric method. J Liq Chromatogr Relat Technol 37:1524–1534

    Article  CAS  Google Scholar 

  147. Mohammad A, Mobin R (2015) Ionic liquid in thin-layer chromatography of anionic surfactants: selective separation of sodium deoxycholate and identification in commercial products. J Surf Deterg 52:493–501

    CAS  Google Scholar 

  148. Mohammad A, Mobin R (2015) Ionic liquid as separation enhancer in thin layer chromatography of bio-surfactants: mutual separation of sodium cholate, sodium deoxycholate and sodium taurocholate. J Anal Sci Technol 6:1–9

    Article  Google Scholar 

  149. Mieszkowski D, Sroka WD, Marszałł MP (2015) Influence of the anionic part of 1-alkyl-3-methylimidazolium based ionic liquids on the chromatographic behavior of perazine in RP-HPTLC. J Liq Chromatogr Relat Technol 38:1499–1506

    Article  CAS  Google Scholar 

  150. Lu J, Ma HY, Zhang W, Ma ZG, Yao S (2015) Separation of berberine hydrochloride and tetra hydrodropalmatine and their quantitative analysis with thin layer chromatography involved with ionic liquids. J Anal Methods Chem 2015:1–7

    Article  Google Scholar 

  151. Mohammad A, Khan M, Ullah Q, Mohammad F (2017) Effective separation of organic dyes using ionic liquids as green mobile phase and poly-aniline-modified silica gel nano-composite based thin- layer chromatography. J Anal Sci Technol 8:1–18

    Article  Google Scholar 

  152. Tuzimski T, Petruczynik A (2017) Application of mobile phases containing ionic liquid for the separation of a mixture of ten selected isoquinoline alkaloids by 2D-TLC and identification of analytes in Rhizoma coptidis (Huang Lian) extract by TLC and HPLC–DAD. J Planar Chromatogr 30:245–250

    Article  CAS  Google Scholar 

  153. Mieszkowski D, Sroka WD, Marszałł MP (2018) Ionic liquids as separation enhancers of haloperidol and its two metabolites in high-performance thin-layer chromatography supported with mass spectrometry. J Planar Chromatogr 31:116–121

    Article  CAS  Google Scholar 

Download references

Acknowledgement

The authors (Qasim Ullah and Salman Ahmad Khan) are highly thankful to all teaching and non-teaching staff for their kind support, help and encouragement in the publication of this review article.

Funding

No funding from any funding agency.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qasim Ullah.

Ethics declarations

Conflict of interest

The authors do not have any conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ullah, Q., Khan, S.A. & Mohammad, A. Applications of green solvents in thin-layer chromatography (TLC)—an overview. JPC-J Planar Chromat 34, 5–29 (2021). https://doi.org/10.1007/s00764-021-00085-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00764-021-00085-w

Keywords

Navigation